BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 33899538)

  • 1. Role of myokines and osteokines in cancer cachexia.
    Pin F; Bonewald LF; Bonetto A
    Exp Biol Med (Maywood); 2021 Oct; 246(19):2118-2127. PubMed ID: 33899538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines.
    Kirk B; Feehan J; Lombardi G; Duque G
    Curr Osteoporos Rep; 2020 Aug; 18(4):388-400. PubMed ID: 32529456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myokines in treatment-naïve patients with cancer-associated cachexia.
    de Castro GS; Correia-Lima J; Simoes E; Orsso CE; Xiao J; Gama LR; Gomes SP; Gonçalves DC; Costa RGF; Radloff K; Lenz U; Taranko AE; Bin FC; Formiga FB; de Godoy LGL; de Souza RP; Nucci LHA; Feitoza M; de Castro CC; Tokeshi F; Alcantara PSM; Otoch JP; Ramos AF; Laviano A; Coletti D; Mazurak VC; Prado CM; Seelaender M
    Clin Nutr; 2021 Apr; 40(4):2443-2455. PubMed ID: 33190987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression.
    Huang Q; Wu M; Wu X; Zhang Y; Xia Y
    Biochim Biophys Acta Rev Cancer; 2022 Sep; 1877(5):188761. PubMed ID: 35850277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myokines and Osteokines in the Pathogenesis of Muscle and Bone Diseases.
    Colaianni G; Storlino G; Sanesi L; Colucci S; Grano M
    Curr Osteoporos Rep; 2020 Aug; 18(4):401-407. PubMed ID: 32514668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Health and Disease: A Role of Osteokines?
    Shimonty A; Bonewald LF; Huot JR
    Calcif Tissue Int; 2023 Jul; 113(1):21-38. PubMed ID: 37193929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review.
    Gonzalez-Gil AM; Elizondo-Montemayor L
    Nutrients; 2020 Jun; 12(6):. PubMed ID: 32604889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TNF-α and cancer cachexia: Molecular insights and clinical implications.
    Patel HJ; Patel BM
    Life Sci; 2017 Feb; 170():56-63. PubMed ID: 27919820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions.
    Siddiqui JA; Pothuraju R; Jain M; Batra SK; Nasser MW
    Biochim Biophys Acta Rev Cancer; 2020 Apr; 1873(2):188359. PubMed ID: 32222610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.
    Fukawa T; Yan-Jiang BC; Min-Wen JC; Jun-Hao ET; Huang D; Qian CN; Ong P; Li Z; Chen S; Mak SY; Lim WJ; Kanayama HO; Mohan RE; Wang RR; Lai JH; Chua C; Ong HS; Tan KK; Ho YS; Tan IB; Teh BT; Shyh-Chang N
    Nat Med; 2016 Jun; 22(6):666-71. PubMed ID: 27135739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Pathways: Cachexia Signaling-A Targeted Approach to Cancer Treatment.
    Miyamoto Y; Hanna DL; Zhang W; Baba H; Lenz HJ
    Clin Cancer Res; 2016 Aug; 22(16):3999-4004. PubMed ID: 27340276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic Alcohol Consumption Enhances Skeletal Muscle Wasting in Mice Bearing Cachectic Cancers: The Role of TNFα/Myostatin Axis.
    Li Y; Zhang F; Modrak S; Little A; Zhang H
    Alcohol Clin Exp Res; 2020 Jan; 44(1):66-77. PubMed ID: 31657476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myokines as Possible Therapeutic Targets in Cancer Cachexia.
    Manole E; Ceafalan LC; Popescu BO; Dumitru C; Bastian AE
    J Immunol Res; 2018; 2018():8260742. PubMed ID: 30426026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms to explain wasting of muscle and fat in cancer cachexia.
    Argilés JM; López-Soriano FJ; Busquets S
    Curr Opin Support Palliat Care; 2007 Dec; 1(4):293-8. PubMed ID: 18685378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture.
    Sheng R; Cao M; Song M; Wang M; Zhang Y; Shi L; Xie T; Li Y; Wang J; Rui Y
    J Orthop Translat; 2023 Nov; 43():36-46. PubMed ID: 38021216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.
    Sun R; Zhang S; Hu W; Lu X; Lou N; Yang Z; Chen S; Zhang X; Yang H
    Am J Physiol Cell Physiol; 2016 Jul; 311(1):C101-15. PubMed ID: 27122162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle and Bone Defects in Metastatic Disease.
    Pauk M; Saito H; Hesse E; Taipaleenmäki H
    Curr Osteoporos Rep; 2022 Oct; 20(5):273-289. PubMed ID: 35994202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation.
    Daou HN
    Am J Physiol Regul Integr Comp Physiol; 2020 Feb; 318(2):R296-R310. PubMed ID: 31823669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.
    Yoshida T; Tabony AM; Galvez S; Mitch WE; Higashi Y; Sukhanov S; Delafontaine P
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2322-32. PubMed ID: 23769949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Impact of Non-bone Metastatic Cancer on Musculoskeletal Health.
    Galiana-Melendez F; Huot JR
    Curr Osteoporos Rep; 2024 Jun; 22(3):318-329. PubMed ID: 38649653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.