These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33899845)

  • 1. Aligned and electrically conductive 3D collagen scaffolds for skeletal muscle tissue engineering.
    Basurto IM; Mora MT; Gardner GM; Christ GJ; Caliari SR
    Biomater Sci; 2021 Jun; 9(11):4040-4053. PubMed ID: 33899845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling scaffold conductivity and pore size to direct myogenic cell alignment and differentiation.
    Basurto IM; Muhammad SA; Gardner GM; Christ GJ; Caliari SR
    J Biomed Mater Res A; 2022 Oct; 110(10):1681-1694. PubMed ID: 35762455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.
    Chen MC; Sun YC; Chen YH
    Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing C2C12 myoblast differentiation using polycaprolactone-polypyrrole copolymer scaffolds.
    Browe D; Freeman J
    J Biomed Mater Res A; 2019 Jan; 107(1):220-231. PubMed ID: 30378775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering.
    Zhang Y; Zhang Z; Wang Y; Su Y; Chen M
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111070. PubMed ID: 32806237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application.
    Zarei M; Samimi A; Khorram M; Abdi MM; Golestaneh SI
    Int J Biol Macromol; 2021 Jan; 168():175-186. PubMed ID: 33309657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds.
    Chen S; Nakamoto T; Kawazoe N; Chen G
    Biomaterials; 2015 Dec; 73():23-31. PubMed ID: 26398306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically conductive coatings in tissue engineering.
    Kohestani AA; Xu Z; Baştan FE; Boccaccini AR; Pishbin F
    Acta Biomater; 2024 Sep; 186():30-62. PubMed ID: 39128796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycled algae-based carbon materials as electroconductive 3D printed skeletal muscle tissue engineering scaffolds.
    Bilge S; Ergene E; Talak E; Gokyer S; Donar YO; Sınağ A; Yilgor Huri P
    J Mater Sci Mater Med; 2021 Jun; 32(7):73. PubMed ID: 34152502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation.
    Pelto J; Björninen M; Pälli A; Talvitie E; Hyttinen J; Mannerström B; Suuronen Seppanen R; Kellomäki M; Miettinen S; Haimi S
    Tissue Eng Part A; 2013 Apr; 19(7-8):882-92. PubMed ID: 23126228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering.
    Maharjan B; Kaliannagounder VK; Jang SR; Awasthi GP; Bhattarai DP; Choukrani G; Park CH; Kim CS
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111056. PubMed ID: 32994008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering.
    Distler T; Polley C; Shi F; Schneidereit D; Ashton MD; Friedrich O; Kolb JF; Hardy JG; Detsch R; Seitz H; Boccaccini AR
    Adv Healthc Mater; 2021 May; 10(9):e2001876. PubMed ID: 33711199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.
    Björninen M; Gilmore K; Pelto J; Seppänen-Kaijansinkko R; Kellomäki M; Miettinen S; Wallace G; Grijpma D; Haimi S
    Ann Biomed Eng; 2017 Apr; 45(4):1015-1026. PubMed ID: 27844175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering.
    Zhao Y; Liang Y; Ding S; Zhang K; Mao HQ; Yang Y
    Biomaterials; 2020 Oct; 255():120164. PubMed ID: 32554132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze-dried porous collagen scaffolds for the repair of volumetric muscle loss injuries.
    Basurto IM; Boudreau RD; Bandara GC; Muhammad SA; Christ GJ; Caliari SR
    bioRxiv; 2024 Sep; ():. PubMed ID: 39282357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D anisotropic conductive fibers electrically stimulated myogenesis.
    Zhang Y; Le Friec A; Chen M
    Int J Pharm; 2021 Sep; 606():120841. PubMed ID: 34216768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel fluffy conductive polypyrrole nano-layer coated PLLA fibrous scaffold for nerve tissue engineering.
    Jin L; Feng ZQ; Zhu ML; Wang T; Leach MK; Jiang Q
    J Biomed Nanotechnol; 2012 Oct; 8(5):779-85. PubMed ID: 22888748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity.
    Caliari SR; Harley BA
    Biomaterials; 2011 Aug; 32(23):5330-40. PubMed ID: 21550653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations.
    Ma C; Jiang L; Wang Y; Gang F; Xu N; Li T; Liu Z; Chi Y; Wang X; Zhao L; Feng Q; Sun X
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31390733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.