These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 3389993)

  • 1. Computerized synthesis of electromyographic interference patterns.
    Joynt RL; Erlandson RF; Rourke M
    Arch Phys Med Rehabil; 1988 Jul; 69(7):517-23. PubMed ID: 3389993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can standard surface EMG processing parameters be used to estimate motor unit global firing rate?
    Zhou P; Rymer WZ
    J Neural Eng; 2004 Jun; 1(2):99-110. PubMed ID: 15876628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of concentric needle EMG motor unit action potentials.
    Nandedkar SD; Sanders DB; Stålberg EV; Andreassen S
    Muscle Nerve; 1988 Feb; 11(2):151-9. PubMed ID: 3343991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation and analysis of the electromyographic interference pattern in normal muscle. Part I: Turns and amplitude measurements.
    Nandedkar SD; Sanders DB; Stålberg EV
    Muscle Nerve; 1986 Jun; 9(5):423-30. PubMed ID: 3724788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and analysis of the electromyographic interference pattern in normal muscle. Part II: Activity, upper centile amplitude, and number of small segments.
    Nandedkar SD; Sanders DB; Stålberg EV
    Muscle Nerve; 1986; 9(6):486-90. PubMed ID: 3736582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of myopathic motor unit action potentials.
    Nandedkar SD; Sanders DB
    Muscle Nerve; 1989 Mar; 12(3):197-202. PubMed ID: 2725550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Computer-assisted analysis of the electromyogram for routine clinical use].
    Strempel JF; Feistner H; Münte TF; Hinrichs H; Heinze HJ
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1992 Sep; 23(3):127-34. PubMed ID: 1425388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skill and selection bias has least influence on motor unit action potential firing rate/frequency.
    Chu J; Takehara I; Li TC; Schwartz I
    Electromyogr Clin Neurophysiol; 2003; 43(7):387-92. PubMed ID: 14626717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for automated EMG decomposition and MUAP classification.
    Katsis CD; Goletsis Y; Likas A; Fotiadis DI; Sarmas I
    Artif Intell Med; 2006 May; 37(1):55-64. PubMed ID: 16377160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation analysis of interference EMG during fatiguing voluntary contractions. Part I: What do the intramuscular spike amplitude-frequency histograms reflect?
    Dimitrov GV; Arabadzhiev TI; Hogrel JY; Dimitrova NA
    J Electromyogr Kinesiol; 2008 Feb; 18(1):26-34. PubMed ID: 16963279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of the utility and limitations of counting motor unit action potentials in the surface electromyogram.
    Zhou P; Rymer WZ
    J Neural Eng; 2004 Dec; 1(4):238-45. PubMed ID: 15876644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor unit action potential (MUAP) parameters affected by editing duration cursors.
    Takehara I; Chu J; Schwartz I; Aye HH
    Electromyogr Clin Neurophysiol; 2004; 44(5):265-9. PubMed ID: 15378864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behaviour of motor unit action potential rate, estimated from surface EMG, as a measure of muscle activation level.
    Kallenberg LA; Hermens HJ
    J Neuroeng Rehabil; 2006 Jul; 3():15. PubMed ID: 16846508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-stage method for MUAP classification based on EMG decomposition.
    Katsis CD; Exarchos TP; Papaloukas C; Goletsis Y; Fotiadis DI; Sarmas I
    Comput Biol Med; 2007 Sep; 37(9):1232-40. PubMed ID: 17208215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation analysis of interference EMG during fatiguing voluntary contractions. Part II--changes in amplitude and spectral characteristics.
    Dimitrov GV; Arabadzhiev TI; Hogrel JY; Dimitrova NA
    J Electromyogr Kinesiol; 2008 Feb; 18(1):35-43. PubMed ID: 16963280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of time-varying analysis to diagnostic needle electromyography.
    Sheean GL
    Med Eng Phys; 2012 Mar; 34(2):249-55. PubMed ID: 21831690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The need for computer-aided electromyography.
    Hausmanowa-Petrusewicz I
    Acta Physiol Pol; 1988; 39(1):1-10. PubMed ID: 3048044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor unit number estimation, isometric strength, and electromyographic measures in amyotrophic lateral sclerosis.
    Bromberg MB; Forshew DA; Nau KL; Bromberg J; Simmons Z; Fries TJ
    Muscle Nerve; 1993 Nov; 16(11):1213-9. PubMed ID: 8413373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative motor unit action potentials (QMUAP) in whiplash patients with neck and upper-limb pain.
    Chu J; Eun SS; Schwartz I
    Electromyogr Clin Neurophysiol; 2005; 45(6):323-8. PubMed ID: 16315969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synthesis of EMG signals based on considerations of signal spectra.
    Gammans P; Qin SF; Wright DK
    Biomed Sci Instrum; 2003; 39():187-92. PubMed ID: 12724892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.