These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 33900014)
1. Spurious regulatory connections dictate the expression-fitness landscape of translation factors. Lalanne JB; Parker DJ; Li GW Mol Syst Biol; 2021 Apr; 17(4):e10302. PubMed ID: 33900014 [TBL] [Abstract][Full Text] [Related]
2. Release factor-dependent ribosome rescue by BrfA in the Gram-positive bacterium Bacillus subtilis. Shimokawa-Chiba N; Müller C; Fujiwara K; Beckert B; Ito K; Wilson DN; Chiba S Nat Commun; 2019 Nov; 10(1):5397. PubMed ID: 31776341 [TBL] [Abstract][Full Text] [Related]
3. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis. Borkowski O; Goelzer A; Schaffer M; Calabre M; Mäder U; Aymerich S; Jules M; Fromion V Mol Syst Biol; 2016 May; 12(5):870. PubMed ID: 27193784 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide identification of genes directly regulated by the pleiotropic transcription factor Spx in Bacillus subtilis. Rochat T; Nicolas P; Delumeau O; Rabatinová A; Korelusová J; Leduc A; Bessières P; Dervyn E; Krásny L; Noirot P Nucleic Acids Res; 2012 Oct; 40(19):9571-83. PubMed ID: 22904090 [TBL] [Abstract][Full Text] [Related]
5. Global analysis of translation termination in E. coli. Baggett NE; Zhang Y; Gross CA PLoS Genet; 2017 Mar; 13(3):e1006676. PubMed ID: 28301469 [TBL] [Abstract][Full Text] [Related]
6. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis. Bidnenko V; Nicolas P; Grylak-Mielnicka A; Delumeau O; Auger S; Aucouturier A; Guerin C; Repoila F; Bardowski J; Aymerich S; Bidnenko E PLoS Genet; 2017 Jul; 13(7):e1006909. PubMed ID: 28723971 [TBL] [Abstract][Full Text] [Related]
7. Translation control of trpG from transcripts originating from the folate operon promoter of Bacillus subtilis is influenced by translation-mediated displacement of bound TRAP, while translation control of transcripts originating from a newly identified trpG promoter is not. Yakhnin H; Yakhnin AV; Babitzke P J Bacteriol; 2007 Feb; 189(3):872-9. PubMed ID: 17114263 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes. Mäder U; Hennig S; Hecker M; Homuth G J Bacteriol; 2004 Apr; 186(8):2240-52. PubMed ID: 15060025 [TBL] [Abstract][Full Text] [Related]
9. On the pH dependence of class-1 RF-dependent termination of mRNA translation. Indrisiunaite G; Pavlov MY; Heurgué-Hamard V; Ehrenberg M J Mol Biol; 2015 May; 427(9):1848-60. PubMed ID: 25619162 [TBL] [Abstract][Full Text] [Related]
10. Tandem transcription and translation regulatory sensing of uncharged tryptophan tRNA. Chen G; Yanofsky C Science; 2003 Jul; 301(5630):211-3. PubMed ID: 12855807 [TBL] [Abstract][Full Text] [Related]
11. A proteomic view of cell physiology of Bacillus subtilis--bringing the genome sequence to life. Hecker M Adv Biochem Eng Biotechnol; 2003; 83():57-92. PubMed ID: 12934926 [TBL] [Abstract][Full Text] [Related]
12. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Craigen WJ; Cook RG; Tate WP; Caskey CT Proc Natl Acad Sci U S A; 1985 Jun; 82(11):3616-20. PubMed ID: 3889910 [TBL] [Abstract][Full Text] [Related]
13. Sequence comparison of new prokaryotic and mitochondrial members of the polypeptide chain release factor family predicts a five-domain model for release factor structure. Pel HJ; Rep M; Grivell LA Nucleic Acids Res; 1992 Sep; 20(17):4423-8. PubMed ID: 1408743 [TBL] [Abstract][Full Text] [Related]
14. Expression of the Bacillus subtilis trpEDCFBA operon is influenced by translational coupling and Rho termination factor. Yakhnin H; Babiarz JE; Yakhnin AV; Babitzke P J Bacteriol; 2001 Oct; 183(20):5918-26. PubMed ID: 11566991 [TBL] [Abstract][Full Text] [Related]
15. Large-scale reduction of the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation, and metabolism. Reuß DR; Altenbuchner J; Mäder U; Rath H; Ischebeck T; Sappa PK; Thürmer A; Guérin C; Nicolas P; Steil L; Zhu B; Feussner I; Klumpp S; Daniel R; Commichau FM; Völker U; Stülke J Genome Res; 2017 Feb; 27(2):289-299. PubMed ID: 27965289 [TBL] [Abstract][Full Text] [Related]
16. Modular Organization of the NusA- and NusG-Stimulated RNA Polymerase Pause Signal That Participates in the Bacillus subtilis trp Operon Attenuation Mechanism. Mondal S; Yakhnin AV; Babitzke P J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28507243 [TBL] [Abstract][Full Text] [Related]
17. Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. Kelwick R; Webb AJ; MacDonald JT; Freemont PS Metab Eng; 2016 Nov; 38():370-381. PubMed ID: 27697563 [TBL] [Abstract][Full Text] [Related]
18. Transcription and translation of the sigG gene is tuned for proper execution of the switch from early to late gene expression in the developing Bacillus subtilis spore. Mearls EB; Jackter J; Colquhoun JM; Farmer V; Matthews AJ; Murphy LS; Fenton C; Camp AH PLoS Genet; 2018 Apr; 14(4):e1007350. PubMed ID: 29702640 [TBL] [Abstract][Full Text] [Related]
19. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. Eymann C; Homuth G; Scharf C; Hecker M J Bacteriol; 2002 May; 184(9):2500-20. PubMed ID: 11948165 [TBL] [Abstract][Full Text] [Related]
20. Lack of peptide-release activity responding to codon UGA in Mycoplasma capricolum. Inagaki Y; Bessho Y; Osawa S Nucleic Acids Res; 1993 Mar; 21(6):1335-8. PubMed ID: 8464722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]