These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33900320)

  • 21. The role of natural salivary defences in maintaining a healthy oral microbiota.
    Lynge Pedersen AM; Belstrøm D
    J Dent; 2019 Jan; 80 Suppl 1():S3-S12. PubMed ID: 30696553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Saliva tannin interactions.
    Prinz JF; Lucas PW
    J Oral Rehabil; 2000 Nov; 27(11):991-4. PubMed ID: 11106991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fat retention at the tongue and the role of saliva: adhesion and spreading of 'protein-poor' versus 'protein-rich' emulsions.
    Dresselhuis DM; Stuart MA; van Aken GA; Schipper RG; de Hoog EH
    J Colloid Interface Sci; 2008 May; 321(1):21-9. PubMed ID: 18295228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Individual astringency responsiveness affects the acceptance of phenol-rich foods.
    Dinnella C; Recchia A; Tuorila H; Monteleone E
    Appetite; 2011 Jun; 56(3):633-42. PubMed ID: 21354451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An integrative salivary approach regarding palate cleansers in wine tasting.
    Taladrid D; Lorente L; Bartolomé B; Moreno-Arribas MV; Laguna L
    J Texture Stud; 2019 Feb; 50(1):75-82. PubMed ID: 30198574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A physiological model of tea-induced astringency.
    Nayak A; Carpenter GH
    Physiol Behav; 2008 Oct; 95(3):290-4. PubMed ID: 18590751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of formulation and saliva on acid milk gel friction behavior.
    Joyner Melito HS; Pernell CW; Daubert CR
    J Food Sci; 2014 May; 79(5):E867-80. PubMed ID: 24761781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of Chemical Species on Polyphenol-Protein Interactions Related to Wine Astringency.
    Ramos-Pineda AM; Carpenter GH; García-Estévez I; Escribano-Bailón MT
    J Agric Food Chem; 2020 Mar; 68(10):2948-2954. PubMed ID: 30854856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a New Cell-Based Oral Model To Study the Interaction of Oral Constituents with Food Polyphenols.
    Soares S; Brandão E; Guerreiro C; Mateus N; de Freitas V; Soares S
    J Agric Food Chem; 2019 Nov; 67(46):12833-12843. PubMed ID: 31657214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Invited review: Astringency in whey protein beverages.
    Carter BG; Foegeding EA; Drake MA
    J Dairy Sci; 2020 Jul; 103(7):5793-5804. PubMed ID: 32448585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of a Procyanidin Mixture with Human Saliva and the Variations of Salivary Protein Profiles over a 1-Year Period.
    Guerreiro C; Jesus M; Brandão E; Mateus N; de Freitas V; Soares S
    J Agric Food Chem; 2020 Nov; 68(47):13824-13832. PubMed ID: 33170702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring mouthfeel in model wines: Sensory-to-instrumental approaches.
    Laguna L; Sarkar A; Bryant MG; Beadling AR; Bartolomé B; Victoria Moreno-Arribas M
    Food Res Int; 2017 Dec; 102():478-486. PubMed ID: 29195975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Saliva characteristics and individual sensitivity to phenolic astringent stimuli.
    Dinnella C; Recchia A; Fia G; Bertuccioli M; Monteleone E
    Chem Senses; 2009 May; 34(4):295-304. PubMed ID: 19193699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction between Ellagitannins and Salivary Proline-Rich Proteins.
    Soares S; Brandão E; García-Estevez I; Fonseca F; Guerreiro C; Ferreira-da-Silva F; Mateus N; Deffieux D; Quideau S; de Freitas V
    J Agric Food Chem; 2019 Aug; 67(34):9579-9590. PubMed ID: 31381329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced Mucin-7 (Muc7) Sialylation and Altered Saliva Rheology in Sjögren's Syndrome Associated Oral Dryness.
    Chaudhury NM; Proctor GB; Karlsson NG; Carpenter GH; Flowers SA
    Mol Cell Proteomics; 2016 Mar; 15(3):1048-59. PubMed ID: 26631508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of age and salivary secretion rate on oral sugar clearance.
    Hase JC
    Swed Dent J Suppl; 1993; 89():1-65. PubMed ID: 8503094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of charge interactions on astringency of whey proteins at low pH.
    Vardhanabhuti B; Kelly MA; Luck PJ; Drake MA; Foegeding EA
    J Dairy Sci; 2010 May; 93(5):1890-9. PubMed ID: 20412902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of salivary proteins in the mechanism of astringency.
    Lee CA; Ismail B; Vickers ZM
    J Food Sci; 2012 Apr; 77(4):C381-7. PubMed ID: 22515235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soft Tribology and Its Relationship With the Sensory Perception in Dairy Products: A Review.
    Corvera-Paredes B; Sánchez-Reséndiz AI; Medina DI; Espiricueta-Candelaria RS; Serna-Saldívar S; Chuck-Hernández C
    Front Nutr; 2022; 9():874763. PubMed ID: 35662955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enabling the Rational Design of Low-Fat Snack Foods: Insights from
    Boehm MW; Yakubov GE; Delwiche JF; Stokes JR; Baier SK
    J Agric Food Chem; 2019 Aug; 67(32):8725-8734. PubMed ID: 31295997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.