These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33900349)

  • 1. Catalytic asymmetric hydrogenation reaction by in situ formed ultra-fine metal nanoparticles in live thermophilic hydrogen-producing bacteria.
    Bing W; Wang F; Sun Y; Ren J; Qu X
    Nanoscale; 2021 May; 13(17):8024-8029. PubMed ID: 33900349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green synthesis of gold nanoparticles by a newly isolated strain Trichosporon montevideense for catalytic hydrogenation of nitroaromatics.
    Shen W; Qu Y; Pei X; Zhang X; Ma Q; Zhang Z; Li S; Zhou J
    Biotechnol Lett; 2016 Sep; 38(9):1503-8. PubMed ID: 27160995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Au-Pd bimetallic nanoparticles embedded highly porous Fenugreek polysaccharide based micro networks for catalytic applications.
    Mallikarjuna K; Bathula C; Dinneswara Reddy G; Shrestha NK; Kim H; Noh YY
    Int J Biol Macromol; 2019 Apr; 126():352-358. PubMed ID: 30572053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutaraldehyde fixation promotes palladium and gold nanoparticles formation in yeast and enhances their catalytic activity in 4-nitrophenol reduction.
    Tan L; Liu X; Zhang Y
    J Hazard Mater; 2023 Mar; 446():130696. PubMed ID: 36603424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the interaction between a novel unnatural chiral ligand and reactant on palladium for asymmetric hydrogenation.
    Jeon EH; Yang S; Kang SH; Kim S; Lee H
    Phys Chem Chem Phys; 2015 Jul; 17(27):17771-7. PubMed ID: 26084713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dialdehyde cellulose nanocrystals act as multi-role for the formation of ultra-fine gold nanoparticles with high efficiency.
    Xiao G; Wang Y; Zhang H; Zhu Z; Fu S
    Int J Biol Macromol; 2020 Nov; 163():788-800. PubMed ID: 32652157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial and catalytic activities of biosynthesized gold, silver and palladium nanoparticles from Solanum nigurum leaves.
    Vijilvani C; Bindhu MR; Frincy FC; AlSalhi MS; Sabitha S; Saravanakumar K; Devanesan S; Umadevi M; Aljaafreh MJ; Atif M
    J Photochem Photobiol B; 2020 Jan; 202():111713. PubMed ID: 31760373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical synthesis of palladium nanoparticles: The influence of chemical fixatives used in electron microscopy on nanoparticle formation and catalytic performance.
    Tan L; Ray Jones T; Poitras J; Xie J; Liu X; Southam G
    J Hazard Mater; 2020 Nov; 398():122945. PubMed ID: 32516730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-supported palladium and ruthenium nanoparticles: application as catalysts in alcohol oxidation, cross-coupling and hydrogenation reactions.
    García-Suárez EJ; Lara P; García AB; Philippot K
    Recent Pat Nanotechnol; 2013 Nov; 7(3):247-64. PubMed ID: 22946626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sapium sebiferum leaf extract mediated synthesis of palladium nanoparticles and in vitro investigation of their bacterial and photocatalytic activities.
    Tahir K; Nazir S; Li B; Ahmad A; Nasir T; Khan AU; Shah SA; Khan ZU; Yasin G; Hameed MU
    J Photochem Photobiol B; 2016 Nov; 164():164-173. PubMed ID: 27689741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A General Approach To Fabricate Fe3O4 Nanoparticles Decorated with Pd, Au, and Rh: Magnetically Recoverable and Reusable Catalysts for Suzuki C-C Cross-Coupling Reactions, Hydrogenation, and Sequential Reactions.
    Gonzàlez de Rivera F; Angurell I; Rossell MD; Erni R; Llorca J; Divins NJ; Muller G; Seco M; Rossell O
    Chemistry; 2013 Sep; 19(36):11963-74. PubMed ID: 23868578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis.
    Banerjee A; Theron R; Scott RW
    ChemSusChem; 2012 Jan; 5(1):109-16. PubMed ID: 22174187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen-Rich Porous Organic Polyamines for Stabilization of Highly Dispersed Metal Nanoparticles and Catalytic Application.
    Yang D; Hou Y; Zhuang Q; Liu P; Kong J
    Macromol Rapid Commun; 2019 Sep; 40(17):e1900100. PubMed ID: 31206915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold Nanoparticles as Efficient Catalysts in Organic Transformations.
    Wani IA; Jain SK; Khan H; Kalam A; Ahmad T
    Curr Pharm Biotechnol; 2021; 22(6):724-732. PubMed ID: 33602074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resin-Immobilized Palladium Nanoparticle Catalysts for Organic Reactions in Aqueous Media: Morphological Aspects.
    Mastrorilli P; Dell'Anna MM; Rizzuti A; Mali M; Zapparoli M; Leonelli C
    Molecules; 2015 Oct; 20(10):18661-84. PubMed ID: 26473823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pd cluster nanowires as highly efficient catalysts for selective hydrogenation reactions.
    Zhang ZC; Zhang X; Yu QY; Liu ZC; Xu CM; Gao JS; Zhuang J; Wang X
    Chemistry; 2012 Feb; 18(9):2639-45. PubMed ID: 22282407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts.
    Ren D; He L; Yu L; Ding RS; Liu YM; Cao Y; He HY; Fan KN
    J Am Chem Soc; 2012 Oct; 134(42):17592-8. PubMed ID: 23020578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Janus nanosheets composed of gold/palladium nanoparticles and reduced graphene oxide for highly efficient emulsion catalysis.
    Chen Y; Zhang L; Wang J; Sheng H; Wang K; Wang J; He S; Yu L; Lu G
    J Colloid Interface Sci; 2022 Nov; 625():59-69. PubMed ID: 35714409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.
    Metin Ö; Sun X; Sun S
    Nanoscale; 2013 Feb; 5(3):910-2. PubMed ID: 23254519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic hydrogenation rate of polycyclic aromatic hydrocarbons in supercritical carbon dioxide containing polymer-stabilized palladium nanoparticles.
    Liao W; Liu HW; Chen HJ; Chang WY; Chiu KH; Wai CM
    Chemosphere; 2011 Jan; 82(4):573-80. PubMed ID: 21030065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.