These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33900460)

  • 21. [Spatial-temporal Variations and the Regulators of Nitrate Status in Shallow Groundwater of the Typical Mountainous Agricultural Watershed in the Upper Reaches of the Yangtze River].
    Jiang N; Zhou MH; Li H; Li ZY; Zhang XF; Zhu B
    Huan Jing Ke Xue; 2020 Oct; 41(10):4539-4546. PubMed ID: 33124385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrate in groundwater of the United States, 1991-2003.
    Burow KR; Nolan BT; Rupert MG; Dubrovsky NM
    Environ Sci Technol; 2010 Jul; 44(13):4988-97. PubMed ID: 20540531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of environmental isotopes to assess groundwater pollution caused by agricultural activities.
    Arumi J; Escudero M; Aguirre E; Salgado JC; Aravena R
    Isotopes Environ Health Stud; 2020; 56(5-6):673-683. PubMed ID: 32876495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of land cover on groundwater quality in the Upper Floridan Aquifer in Florida, United States.
    Bawa R; Dwivedi P
    Environ Pollut; 2019 Sep; 252(Pt B):1828-1840. PubMed ID: 31323460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface- and groundwaters.
    Aquilina L; Vergnaud-Ayraud V; Labasque T; Bour O; Molénat J; Ruiz L; de Montety V; De Ridder J; Roques C; Longuevergne L
    Sci Total Environ; 2012 Oct; 435-436():167-78. PubMed ID: 22854088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using delta15N- and delta18O-values to identify nitrate sources in karst ground water, Guiyang, southwest China.
    Liu CQ; Li SL; Lang YC; Xiao HY
    Environ Sci Technol; 2006 Nov; 40(22):6928-33. PubMed ID: 17153996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hedgerows reduce nitrate flux at hillslope and catchment scales via root uptake and secondary effects.
    Thomas Z; Abbott BW
    J Contam Hydrol; 2018 Aug; 215():51-61. PubMed ID: 30082037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Groundwater for Lake-Water Quality and Quantification of N Seepage.
    Kidmose J; Engesgaard P; Ommen DA; Nilsson B; Flindt MR; Andersen FØ
    Ground Water; 2015; 53(5):709-21. PubMed ID: 25324021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport and potential attenuation of nitrogen in shallow groundwaters in the lower Rangitikei catchment, New Zealand.
    Collins S; Singh R; Rivas A; Palmer A; Horne D; Manderson A; Roygard J; Matthews A
    J Contam Hydrol; 2017 Nov; 206():55-66. PubMed ID: 29033220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-scaled response of groundwater nitrate contamination to integrated anthropogenic activities in a rapidly urbanizing agricultural catchment.
    Liu X; Wang Y; Li Y; Liu F; Shen J; Wang J; Xiao R; Wu J
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):34931-34942. PubMed ID: 31656997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain.
    Hu K; Huang Y; Li H; Li B; Chen D; White RE
    Environ Int; 2005 Aug; 31(6):896-903. PubMed ID: 16005970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Riparian wetland rehabilitation and beaver re-colonization impacts on hydrological processes and water quality in a lowland agricultural catchment.
    Smith A; Tetzlaff D; Gelbrecht J; Kleine L; Soulsby C
    Sci Total Environ; 2020 Jan; 699():134302. PubMed ID: 31522046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [GIS-based analysis of spatio-temporal variability of groundwater nitrate concentration in high-yield region in North China Plain].
    Chen SF; Li W; Hu KL; Wu WL; Chu ZH; Mao WF
    Huan Jing Ke Xue; 2009 Dec; 30(12):3541-7. PubMed ID: 20187384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain.
    Brauns B; Bjerg PL; Song X; Jakobsen R
    J Environ Sci (China); 2016 Jul; 45():60-75. PubMed ID: 27372119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses.
    Kim H; Kaown D; Mayer B; Lee JY; Hyun Y; Lee KK
    Sci Total Environ; 2015 Nov; 533():566-75. PubMed ID: 26204420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of geochemical stressors on shallow groundwater quality.
    An YJ; Kampbell DH; Jeong SW; Jewell KP; Masoner JR
    Sci Total Environ; 2005 Sep; 348(1-3):257-66. PubMed ID: 16162329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece).
    Matiatos I
    Sci Total Environ; 2016 Jan; 541():802-814. PubMed ID: 26437351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using generalized additive mixed models to assess spatial, temporal, and hydrologic controls on bacteria and nitrate in a vulnerable agricultural aquifer.
    Mellor AF; Cey EE
    J Contam Hydrol; 2015 Nov; 182():104-16. PubMed ID: 26348834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of the vegetation-groundwater-stream continuum to understand transformation of biogenic carbon in aquatic systems - A case study based on a pine-maize comparison in a lowland sandy watershed (Landes de Gascogne, SW France).
    Deirmendjian L; Anschutz P; Morel C; Mollier A; Augusto L; Loustau D; Cotovicz LC; Buquet D; Lajaunie K; Chaillou G; Voltz B; Charbonnier C; Poirier D; Abril G
    Sci Total Environ; 2019 Apr; 661():613-629. PubMed ID: 30682612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.