These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 33900581)
1. A deep-learning model to continuously predict severe acute kidney injury based on urine output changes in critically ill patients. Alfieri F; Ancona A; Tripepi G; Crosetto D; Randazzo V; Paviglianiti A; Pasero E; Vecchi L; Cauda V; Fagugli RM J Nephrol; 2021 Dec; 34(6):1875-1886. PubMed ID: 33900581 [TBL] [Abstract][Full Text] [Related]
2. External validation of a deep-learning model to predict severe acute kidney injury based on urine output changes in critically ill patients. Alfieri F; Ancona A; Tripepi G; Randazzo V; Paviglianiti A; Pasero E; Vecchi L; Politi C; Cauda V; Fagugli RM J Nephrol; 2022 Nov; 35(8):2047-2056. PubMed ID: 35554875 [TBL] [Abstract][Full Text] [Related]
3. Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. Koeze J; Keus F; Dieperink W; van der Horst IC; Zijlstra JG; van Meurs M BMC Nephrol; 2017 Feb; 18(1):70. PubMed ID: 28219327 [TBL] [Abstract][Full Text] [Related]
4. Continuous and early prediction of future moderate and severe Acute Kidney Injury in critically ill patients: Development and multi-centric, multi-national external validation of a machine-learning model. Alfieri F; Ancona A; Tripepi G; Rubeis A; Arjoldi N; Finazzi S; Cauda V; Fagugli RM PLoS One; 2023; 18(7):e0287398. PubMed ID: 37490482 [TBL] [Abstract][Full Text] [Related]
6. Predictive value of the RIFLE urine output criteria on contrast-induced nephropathy in critically ill patients. Hocine A; Defrance P; Lalmand J; Delcour C; Biston P; Piagnerelli M BMC Nephrol; 2016 Mar; 17():36. PubMed ID: 27021438 [TBL] [Abstract][Full Text] [Related]
7. Cumulative Application of Creatinine and Urine Output Staging Optimizes the Kidney Disease: Improving Global Outcomes Definition and Identifies Increased Mortality Risk in Hospitalized Patients With Acute Kidney Injury. Sutherland SM; Kaddourah A; Gillespie SE; Soranno DE; Woroniecki RP; Basu RK; Zappitelli M; Crit Care Med; 2021 Nov; 49(11):1912-1922. PubMed ID: 33938717 [TBL] [Abstract][Full Text] [Related]
8. A Machine Learning Algorithm Predicting Acute Kidney Injury in Intensive Care Unit Patients (NAVOY Acute Kidney Injury): Proof-of-Concept Study. Persson I; Grünwald A; Morvan L; Becedas D; Arlbrandt M JMIR Form Res; 2023 Dec; 7():e45979. PubMed ID: 38096015 [TBL] [Abstract][Full Text] [Related]
9. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients]. Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290 [No Abstract] [Full Text] [Related]
10. Acute kidney injury detection using refined and physiological-feature augmented urine output. Alkhairy S; Celi LA; Feng M; Zimolzak AJ Sci Rep; 2021 Oct; 11(1):19561. PubMed ID: 34599217 [TBL] [Abstract][Full Text] [Related]
11. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. Zimmerman LP; Reyfman PA; Smith ADR; Zeng Z; Kho A; Sanchez-Pinto LN; Luo Y BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):16. PubMed ID: 30700291 [TBL] [Abstract][Full Text] [Related]
12. Optimal cut points of plasma and urine neutrophil gelatinase-associated lipocalin for the prediction of acute kidney injury among critically ill adults: retrospective determination and clinical validation of a prospective multicentre study. Tecson KM; Erhardtsen E; Eriksen PM; Gaber AO; Germain M; Golestaneh L; Lavoria MLA; Moore LW; McCullough PA BMJ Open; 2017 Jul; 7(7):e016028. PubMed ID: 28698338 [TBL] [Abstract][Full Text] [Related]
13. [Renal echography and cystatin C for prediction of acute kidney injury: very different in patients with cardiac failure or sepsis]. Zhi H; Zhang M; Cui X; Li Y Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2019 Oct; 31(10):1258-1263. PubMed ID: 31771725 [TBL] [Abstract][Full Text] [Related]
14. Biomarker Predictors of Adverse Acute Kidney Injury Outcomes in Critically Ill Patients: The Dublin Acute Biomarker Group Evaluation Study. McMahon BA; Galligan M; Redahan L; Martin T; Meaney E; Cotter EJ; Murphy N; Hannon C; Doran P; Marsh B; Nichol A; Murray PT Am J Nephrol; 2019; 50(1):19-28. PubMed ID: 31203271 [TBL] [Abstract][Full Text] [Related]
15. Definition of hourly urine output influences reported incidence and staging of acute kidney injury. Allen JC; Gardner DS; Skinner H; Harvey D; Sharman A; Devonald MAJ BMC Nephrol; 2020 Jan; 21(1):19. PubMed ID: 31941447 [TBL] [Abstract][Full Text] [Related]
16. Clinical examination findings as predictors of acute kidney injury in critically ill patients. Wiersema R; Koeze J; Eck RJ; Kaufmann T; Hiemstra B; Koster G; Franssen CFM; Vaara ST; Keus F; Van der Horst ICC Acta Anaesthesiol Scand; 2020 Jan; 64(1):69-74. PubMed ID: 31465554 [TBL] [Abstract][Full Text] [Related]
17. Comparison Between RIFLE, AKIN, and KDIGO: Acute Kidney Injury Definition Criteria for Prediction of In-hospital Mortality in Critically Ill Patients. Er RE; Ulusal Okyay G; Aygencel B Kmaz G; Türko Lu M; Erten Y Iran J Kidney Dis; 2020 Sep; 14(5):365-372. PubMed ID: 32943591 [TBL] [Abstract][Full Text] [Related]
18. Plasma and urine neutrophil gelatinase-associated lipocalin in the diagnosis of new onset acute kidney injury in critically ill patients. Matsa R; Ashley E; Sharma V; Walden AP; Keating L Crit Care; 2014 Jul; 18(4):R137. PubMed ID: 24985156 [TBL] [Abstract][Full Text] [Related]
19. Machine-learning model for predicting oliguria in critically ill patients. Yamao Y; Oami T; Yamabe J; Takahashi N; Nakada TA Sci Rep; 2024 Jan; 14(1):1054. PubMed ID: 38212363 [TBL] [Abstract][Full Text] [Related]
20. Effects of 24-hour urine-output trajectories on the risk of acute kidney injury in critically ill patients with cirrhosis: a retrospective cohort analysis. Wang J; Niu D; Li X; Zhao Y; Ye E; Huang J; Yue S; Hou X; Wu J Ren Fail; 2024 Dec; 46(1):2298900. PubMed ID: 38178568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]