These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33900606)

  • 1. Measurement of Genetic Mobility Using a Transposon-Based Marker System in Sorghum.
    Lyu JI; Jo YD; Ahn JW; Kim JB; Kwon SJ
    Methods Mol Biol; 2021; 2250():195-205. PubMed ID: 33900606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a transposon-based marker system for mutation breeding in sorghum (Sorghum bicolor L.).
    Im SB; Kwon SJ; Ryu J; Jeong SW; Kim JB; Ahn JW; Kim SH; Jo YD; Choi HI; Kang SY
    Genet Mol Res; 2016 Sep; 15(3):. PubMed ID: 27706735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide patterns of large-size presence/absence variants in sorghum.
    Zhang LM; Luo H; Liu ZQ; Zhao Y; Luo JC; Hao DY; Jing HC
    J Integr Plant Biol; 2014 Jan; 56(1):24-37. PubMed ID: 24428208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for accurate quantification of LTR-retrotransposon copy number using short-read sequence data: a case study in Sorghum.
    Ramachandran D; Hawkins JS
    Mol Genet Genomics; 2016 Oct; 291(5):1871-83. PubMed ID: 27295958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-Specific Amplified Polymorphism (SSAP) and Sequence Characterized Amplified Region (SCAR) Markers in Zea mays.
    Roy NS; Ramekar RV; Kim NS
    Methods Mol Biol; 2021; 2250():207-218. PubMed ID: 33900607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bamboo Transposon Research: Current Status and Perspectives.
    Ramakrishnan M; Yrjälä K; Satheesh V; Zhou MB
    Methods Mol Biol; 2021; 2250():257-270. PubMed ID: 33900611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual analysis of transposon polymorphisms by AFLP.
    Behura SK
    Methods Mol Biol; 2012; 859():155-67. PubMed ID: 22367870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting Genetic Mobility Using a Transposon-Based Marker System in Gamma-Ray Irradiated Soybean Mutants.
    Hung NN; Kim DG; Lyu JI; Park KC; Kim JM; Kim JB; Ha BK; Kwon SJ
    Plants (Basel); 2021 Feb; 10(2):. PubMed ID: 33671964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic control of transposon transcription and mobility in Arabidopsis.
    Bucher E; Reinders J; Mirouze M
    Curr Opin Plant Biol; 2012 Nov; 15(5):503-10. PubMed ID: 22940592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transposable elements: powerful contributors to angiosperm evolution and diversity.
    Oliver KR; McComb JA; Greene WK
    Genome Biol Evol; 2013; 5(10):1886-901. PubMed ID: 24065734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Recent progress in plant genome size evolution].
    Chen JJ; Wang Y
    Yi Chuan; 2009 May; 31(5):464-70. PubMed ID: 19586839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding.
    Venkatesh ; Nandini B
    Mol Biol Rep; 2020 Apr; 47(4):3155-3167. PubMed ID: 32162128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Evolutionary Consequences of Transposon-Related Pericentromer Expansion in Melon.
    Morata J; Tormo M; Alexiou KG; Vives C; Ramos-Onsins SE; Garcia-Mas J; Casacuberta JM
    Genome Biol Evol; 2018 Jun; 10(6):1584-1595. PubMed ID: 29901717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and evolution of transposable elements in Arabidopsis.
    Joly-Lopez Z; Bureau TE
    Chromosome Res; 2014 Jun; 22(2):203-16. PubMed ID: 24801342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Activity in Expanding Populations and Purifying Selection Have Shaped Transposable Element Landscapes across Natural Accessions of the Mediterranean Grass Brachypodium distachyon.
    Stritt C; Gordon SP; Wicker T; Vogel JP; Roulin AC
    Genome Biol Evol; 2018 Jan; 10(1):304-318. PubMed ID: 29281015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat.
    Wanjugi H; Coleman-Derr D; Huo N; Kianian SF; Luo MC; Wu J; Anderson O; Gu YQ
    Genome; 2009 Jun; 52(6):576-87. PubMed ID: 19483776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early-generation germplasm introgression from Sorghum macrospermum into sorghum (S. bicolor).
    Kuhlman LC; Burson BL; Stelly DM; Klein PE; Klein RR; Price HJ; Rooney WL
    Genome; 2010 Jun; 53(6):419-29. PubMed ID: 20555431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isaac-CACTA transposons: new genetic markers in maize and sorghum.
    Lee JK; Kwon SJ; Park KC; Kim NS
    Genome; 2005 Jun; 48(3):455-60. PubMed ID: 16121242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA methylome analysis provides evidence that the expansion of the tea genome is linked to TE bursts.
    Wang L; Shi Y; Chang X; Jing S; Zhang Q; You C; Yuan H; Wang H
    Plant Biotechnol J; 2019 Apr; 17(4):826-835. PubMed ID: 30256509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution and diversity of transposable elements in fish genomes.
    Shao F; Han M; Peng Z
    Sci Rep; 2019 Oct; 9(1):15399. PubMed ID: 31659260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.