These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33900606)

  • 21. A reference microsatellite kit to assess for genetic diversity of Sorghum bicolor (Poaceae).
    Billot C; Rivallan R; Sall MN; Fonceka D; Deu M; Glaszmann JC; Noyer JL; Rami JF; Risterucci AM; Wincker P; Ramu P; Hash CT
    Am J Bot; 2012 Jun; 99(6):e245-50. PubMed ID: 22645098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico analysis of plant and animal transposable elements.
    Huang ML; Wattanachaisaereekul S; Han YJ; Vongsangnak W
    Int J Bioinform Res Appl; 2014; 10(3):297-306. PubMed ID: 24794071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genietic and molecular characterization of Candystripel transposition events in sorghum.
    Carvalho CH; Boddu J; Zehr UB; Axtell JD; Pedersen JF; Chopra S
    Genetica; 2005 Jul; 124(2-3):201-12. PubMed ID: 16134333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What makes up plant genomes: The vanishing line between transposable elements and genes.
    Zhao D; Ferguson AA; Jiang N
    Biochim Biophys Acta; 2016 Feb; 1859(2):366-80. PubMed ID: 26709091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization.
    McCormick RF; Truong SK; Sreedasyam A; Jenkins J; Shu S; Sims D; Kennedy M; Amirebrahimi M; Weers BD; McKinley B; Mattison A; Morishige DT; Grimwood J; Schmutz J; Mullet JE
    Plant J; 2018 Jan; 93(2):338-354. PubMed ID: 29161754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of genome composition in Triticeae reveals strong variation in transposable element dynamics and nucleotide diversity.
    Middleton CP; Stein N; Keller B; Kilian B; Wicker T
    Plant J; 2013 Jan; 73(2):347-56. PubMed ID: 23057663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of sorghum bicolor.
    Hamblin MT; Mitchell SE; White GM; Gallego J; Kukatla R; Wing RA; Paterson AH; Kresovich S
    Genetics; 2004 May; 167(1):471-83. PubMed ID: 15166170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts.
    Bousios A; Gaut BS
    Curr Opin Plant Biol; 2016 Apr; 30():123-33. PubMed ID: 26950253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transposons: a blessing curse.
    Dubin MJ; Mittelsten Scheid O; Becker C
    Curr Opin Plant Biol; 2018 Apr; 42():23-29. PubMed ID: 29453028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transposable elements contribute to activation of maize genes in response to abiotic stress.
    Makarevitch I; Waters AJ; West PT; Stitzer M; Hirsch CN; Ross-Ibarra J; Springer NM
    PLoS Genet; 2015 Jan; 11(1):e1004915. PubMed ID: 25569788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epigenetic regulation and functional exaptation of transposable elements in higher plants.
    Cui X; Cao X
    Curr Opin Plant Biol; 2014 Oct; 21():83-88. PubMed ID: 25061895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations.
    Sabot F; Guyot R; Wicker T; Chantret N; Laubin B; Chalhoub B; Leroy P; Sourdille P; Bernard M
    Mol Genet Genomics; 2005 Sep; 274(2):119-30. PubMed ID: 16034625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patching gaps in plant genomes results in gene movement and erosion of colinearity.
    Wicker T; Buchmann JP; Keller B
    Genome Res; 2010 Sep; 20(9):1229-37. PubMed ID: 20530251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide characterization of non-reference transposons in crops suggests non-random insertion.
    Wei B; Liu H; Liu X; Xiao Q; Wang Y; Zhang J; Hu Y; Liu Y; Yu G; Huang Y
    BMC Genomics; 2016 Aug; 17():536. PubMed ID: 27485608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments.
    Chénais B; Caruso A; Hiard S; Casse N
    Gene; 2012 Nov; 509(1):7-15. PubMed ID: 22921893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transposable elements contribute to dynamic genome content in maize.
    Anderson SN; Stitzer MC; Brohammer AB; Zhou P; Noshay JM; O'Connor CH; Hirsch CD; Ross-Ibarra J; Hirsch CN; Springer NM
    Plant J; 2019 Dec; 100(5):1052-1065. PubMed ID: 31381222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. No evidence that sex and transposable elements drive genome size variation in evening primroses.
    Ågren JA; Greiner S; Johnson MT; Wright SI
    Evolution; 2015 Apr; 69(4):1053-62. PubMed ID: 25690700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Molecular genetic analysis of soriz genome (Sorghum oryzoidum)].
    Galaiev OV; Shevchuk GIu; Dudchenko VV; Syvolap IuM
    Tsitol Genet; 2011; 45(4):9-15. PubMed ID: 21950137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants.
    Kalendar R; Amenov A; Daniyarov A
    Funct Plant Biol; 2018 Jan; 46(1):15-29. PubMed ID: 30939255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transposon diversity is higher in amphioxus than in vertebrates: functional and evolutionary inferences.
    Cañestro C; Albalat R
    Brief Funct Genomics; 2012 Mar; 11(2):131-41. PubMed ID: 22389043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.