These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33900744)

  • 1. A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients.
    Dongare PD; Zhao Y; Renard D; Yang J; Neumann O; Metz J; Yuan L; Alabastri A; Nordlander P; Halas NJ
    ACS Nano; 2021 May; 15(5):8761-8769. PubMed ID: 33900744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide.
    Muskens OL; Bergamini L; Wang Y; Gaskell JM; Zabala N; de Groot CH; Sheel DW; Aizpurua J
    Light Sci Appl; 2016 Oct; 5(10):e16173. PubMed ID: 30167127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis.
    Li K; Hogan NJ; Kale MJ; Halas NJ; Nordlander P; Christopher P
    Nano Lett; 2017 Jun; 17(6):3710-3717. PubMed ID: 28481115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.
    Robatjazi H; Zhao H; Swearer DF; Hogan NJ; Zhou L; Alabastri A; McClain MJ; Nordlander P; Halas NJ
    Nat Commun; 2017 Jun; 8(1):27. PubMed ID: 28638073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts.
    Zhang C; Zhao H; Zhou L; Schlather AE; Dong L; McClain MJ; Swearer DF; Nordlander P; Halas NJ
    Nano Lett; 2016 Oct; 16(10):6677-6682. PubMed ID: 27676189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing and controlling photothermal heat generation in plasmonic nanostructures.
    Coppens ZJ; Li W; Walker DG; Valentine JG
    Nano Lett; 2013 Mar; 13(3):1023-8. PubMed ID: 23437919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement.
    Deng YH; Yang ZJ; He J
    Opt Express; 2018 Nov; 26(24):31116-31128. PubMed ID: 30650702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-semiconductor plasmonic nanoantennas for infrared sensing.
    Law S; Yu L; Rosenberg A; Wasserman D
    Nano Lett; 2013 Sep; 13(9):4569-74. PubMed ID: 23987983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.
    Singh A; Calbris G; van Hulst NF
    Nano Lett; 2014 Aug; 14(8):4715-23. PubMed ID: 25019603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement.
    Flauraud V; Regmi R; Winkler PM; Alexander DT; Rigneault H; van Hulst NF; GarcĂ­a-Parajo MF; Wenger J; Brugger J
    Nano Lett; 2017 Mar; 17(3):1703-1710. PubMed ID: 28182429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic-enhanced carbon nanotube infrared bolometers.
    Mahjouri-Samani M; Zhou YS; He XN; Xiong W; Hilger P; Lu YF
    Nanotechnology; 2013 Jan; 24(3):035502. PubMed ID: 23263607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods.
    Hosseini Jebeli SA; West CA; Lee SA; Goldwyn HJ; Bilchak CR; Fakhraai Z; Willets KA; Link S; Masiello DJ
    Nano Lett; 2021 Jun; 21(12):5386-5393. PubMed ID: 34061548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unidirectional Enhanced Dipolar Emission with an Individual Dielectric Nanoantenna.
    Zhang T; Xu J; Deng ZL; Hu D; Qin F; Li X
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31003409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the Heat Dissipation in Temperature-Matched Plasmonic Nanostructures.
    Alabastri A; Malerba M; Calandrini E; Manjavacas A; De Angelis F; Toma A; Proietti Zaccaria R
    Nano Lett; 2017 Sep; 17(9):5472-5480. PubMed ID: 28759244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy.
    Li Y; Hu H; Jiang W; Shi J; Halas NJ; Nordlander P; Zhang S; Xu H
    Nano Lett; 2020 May; 20(5):3499-3505. PubMed ID: 32250634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tesla-Range Femtosecond Pulses of Stationary Magnetic Field, Optically Generated at the Nanoscale in a Plasmonic Antenna.
    Yang X; Mou Y; Gallas B; Maitre A; Coolen L; Mivelle M
    ACS Nano; 2022 Jan; 16(1):386-393. PubMed ID: 34962766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast Thermal Imprinting of Plasmonic Hotspots.
    Askes SHC; Garnett EC
    Adv Mater; 2021 Dec; 33(49):e2105192. PubMed ID: 34623711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the optical response of plasmonic nanoantennas.
    Fischer H; Martin OJ
    Opt Express; 2008 Jun; 16(12):9144-54. PubMed ID: 18545626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterometallic antenna-reactor complexes for photocatalysis.
    Swearer DF; Zhao H; Zhou L; Zhang C; Robatjazi H; Martirez JM; Krauter CM; Yazdi S; McClain MJ; Ringe E; Carter EA; Nordlander P; Halas NJ
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):8916-20. PubMed ID: 27444015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling.
    Liu JN; Huang Q; Liu KK; Singamaneni S; Cunningham BT
    Nano Lett; 2017 Dec; 17(12):7569-7577. PubMed ID: 29078049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.