These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33900761)

  • 1. A Comprehensive Landscape for Fibril Association Behaviors Encoded Synergistically by Saccharides and Peptides.
    Liu R; Zhang R; Li L; Kochovski Z; Yao L; Nieh MP; Lu Y; Shi T; Chen G
    J Am Chem Soc; 2021 May; 143(17):6622-6633. PubMed ID: 33900761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the gel phase of cationic glycylalanylglycine in ethanol/water. I. Rheology and microscopy studies.
    Thursch LJ; DiGuiseppi D; Lewis TR; Schweitzer-Stenner R; Alvarez NJ
    J Colloid Interface Sci; 2020 Mar; 564():499-509. PubMed ID: 31883655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo design of strand-swapped beta-hairpin hydrogels.
    Nagarkar RP; Hule RA; Pochan DJ; Schneider JP
    J Am Chem Soc; 2008 Apr; 130(13):4466-74. PubMed ID: 18335936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amyloid Fibril Design: Limiting Structural Polymorphism in Alzheimer's Aβ Protofilaments.
    Tywoniuk B; Yuan Y; McCartan S; Szydłowska BM; Tofoleanu F; Brooks BR; Buchete NV
    J Phys Chem B; 2018 Dec; 122(49):11535-11545. PubMed ID: 30335383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge attraction and beta propensity are necessary for amyloid fibril formation from tetrapeptides.
    Tjernberg L; Hosia W; Bark N; Thyberg J; Johansson J
    J Biol Chem; 2002 Nov; 277(45):43243-6. PubMed ID: 12215440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers.
    Aggeli A; Nyrkova IA; Bell M; Harding R; Carrick L; McLeish TC; Semenov AN; Boden N
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):11857-62. PubMed ID: 11592996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the Conformational Landscape of Minimalistic Tripeptides by Their
    Brito A; Dave D; Lampel A; Castro VIB; Kroiss D; Reis RL; Tuttle T; Ulijn RV; Pires RA; Pashkuleva I
    J Am Chem Soc; 2021 Dec; 143(47):19703-19710. PubMed ID: 34797059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is a cross-β-sheet structure of low molecular weight peptides necessary for the formation of fibrils and peptide hydrogels?
    Ilawe NV; Schweitzer-Stenner R; DiGuiseppi D; Wong BM
    Phys Chem Chem Phys; 2018 Jul; 20(27):18158-18168. PubMed ID: 29696249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic NAC 71-82 Peptides Designed to Produce Fibrils with Different Protofilament Interface Contacts.
    Näsström T; Dahlberg T; Malyshev D; Ådén J; Andersson PO; Andersson M; Karlsson BCG
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous stacking of prion protein peptides reveals structural details of fibrils and facilitates complete inhibition of fibril growth.
    Boshuizen RS; Schulz V; Morbin M; Mazzoleni G; Meloen RH; Langedijk JP
    J Biol Chem; 2009 May; 284(19):12809-20. PubMed ID: 19304665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge effects on the fibril-forming peptide KTVIIE: a two-dimensional replica exchange simulation study.
    Jeon J; Shell MS
    Biophys J; 2012 Apr; 102(8):1952-60. PubMed ID: 22768952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels.
    Frederix PW; Scott GG; Abul-Haija YM; Kalafatovic D; Pappas CG; Javid N; Hunt NT; Ulijn RV; Tuttle T
    Nat Chem; 2015 Jan; 7(1):30-7. PubMed ID: 25515887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils.
    Ivnitski D; Amit M; Silberbush O; Atsmon-Raz Y; Nanda J; Cohen-Luria R; Miller Y; Ashkenasy G; Ashkenasy N
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9988-92. PubMed ID: 27392288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ILQINS hexapeptide, identified in lysozyme left-handed helical ribbons and nanotubes, forms right-handed helical ribbons and crystals.
    Lara C; Reynolds NP; Berryman JT; Xu A; Zhang A; Mezzenga R
    J Am Chem Soc; 2014 Mar; 136(12):4732-9. PubMed ID: 24580564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides.
    Abb S; Harnau L; Gutzler R; Rauschenbach S; Kern K
    Nat Commun; 2016 Jan; 7():10335. PubMed ID: 26755352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Mechanism of Amyloid Fibril Formation.
    Galzitskaya O
    Curr Protein Pept Sci; 2019; 20(6):630-640. PubMed ID: 30686252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-Dependent Nanofiber Structures of Phenylalanine and Isoleucine Tripeptides.
    Xiong Q; Liu Z; Han W
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.