These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 33900893)
41. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite. Zhang Z; Zhang L; Li A Waste Manag; 2015 Apr; 38():185-93. PubMed ID: 25649918 [TBL] [Abstract][Full Text] [Related]
42. Hydration behavior and immobilization mechanism of MgO-SiO Wang B; Fan C Chemosphere; 2020 Jul; 250():126269. PubMed ID: 32126330 [TBL] [Abstract][Full Text] [Related]
43. Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity. Chen P; Zheng H; Xu H; Gao YX; Ding XQ; Ma ML PLoS One; 2019; 14(10):e0223900. PubMed ID: 31622406 [TBL] [Abstract][Full Text] [Related]
44. Improving the mechanical characteristics and restraining heavy metal evaporation from sintered municipal solid waste incinerator fly ash by wet milling. Sun CJ; Li MG; Gau SH; Wang YH; Jan YL J Hazard Mater; 2011 Nov; 195():281-90. PubMed ID: 21917374 [TBL] [Abstract][Full Text] [Related]
45. Water repellents for the leaching control of heavy metals in municipal solid waste incineration fly ash. Ogawa N; Amano T; Nagai Y; Hagiwara K; Honda T; Koike Y Waste Manag; 2021 Apr; 124():154-159. PubMed ID: 33626420 [TBL] [Abstract][Full Text] [Related]
46. Environmental and human health risk evaluation of heavy metals in ceramsites from municipal solid waste incineration fly ash. Shi Y; Li Y; Yuan X; Fu J; Ma Q; Wang Q Environ Geochem Health; 2020 Nov; 42(11):3779-3794. PubMed ID: 32594416 [TBL] [Abstract][Full Text] [Related]
47. Evaluation of heavy metal element detection in municipal solid waste incineration fly ash based on LIBS sensor. Yao S; Zhang L; Zhu Y; Wu J; Lu Z; Lu J Waste Manag; 2020 Feb; 102():492-498. PubMed ID: 31751921 [TBL] [Abstract][Full Text] [Related]
48. Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag. Zhang Z; Li A; Wang X; Zhang L Waste Manag; 2016 Oct; 56():238-45. PubMed ID: 27432549 [TBL] [Abstract][Full Text] [Related]
49. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill. Kong Q; Yao J; Qiu Z; Shen D Biomed Res Int; 2016; 2016():9687879. PubMed ID: 28044139 [TBL] [Abstract][Full Text] [Related]
50. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838 [TBL] [Abstract][Full Text] [Related]
51. Bottom ash derived from municipal solid waste and sewage sludge co-incineration: First results about characterization and reuse. Assi A; Bilo F; Federici S; Zacco A; Depero LE; Bontempi E Waste Manag; 2020 Oct; 116():147-156. PubMed ID: 32799096 [TBL] [Abstract][Full Text] [Related]
52. Utilization of municipal solid waste incineration (MSWI) fly ash in ceramic brick: product characterization and environmental toxicity. Haiying Z; Youcai Z; Jingyu Q Waste Manag; 2011 Feb; 31(2):331-41. PubMed ID: 21067908 [TBL] [Abstract][Full Text] [Related]
53. Potential application of pre-treated municipal solid waste incineration fly ash as cement supplement. Yakubu Y; Zhou J; Shu Z; Zhang Y; Wang W; Mbululo Y Environ Sci Pollut Res Int; 2018 Jun; 25(16):16167-16176. PubMed ID: 29594881 [TBL] [Abstract][Full Text] [Related]
54. Emission of Per- and Polyfluoroalkyl Substances from a Waste-to-Energy Plant─Occurrence in Ashes, Treated Process Water, and First Observation in Flue Gas. Björklund S; Weidemann E; Jansson S Environ Sci Technol; 2023 Jul; 57(27):10089-10095. PubMed ID: 37319344 [TBL] [Abstract][Full Text] [Related]
55. Evaluation of physicochemical properties of radioactive cesium in municipal solid waste incineration fly ash by particle size classification and leaching tests. Fujii K; Ochi K; Ohbuchi A; Koike Y J Environ Manage; 2018 Jul; 217():157-163. PubMed ID: 29602076 [TBL] [Abstract][Full Text] [Related]
56. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. Qian G; Cao Y; Chui P; Tay J J Hazard Mater; 2006 Feb; 129(1-3):274-81. PubMed ID: 16242842 [TBL] [Abstract][Full Text] [Related]
57. Vitrification of municipal solid waste incineration fly ash with B Gao J; Dong C; Zhao Y; Hu X; Qin W; Wang X; Zhang J; Xue J; Zhang X Waste Manag; 2020 Feb; 102():932-938. PubMed ID: 31855693 [TBL] [Abstract][Full Text] [Related]
58. Stabilization-solidification-utilization of MSWI fly ash coupling CO Chen TL; Chen YH; Dai MY; Chiang PC Waste Manag; 2021 Feb; 121():412-421. PubMed ID: 33445114 [TBL] [Abstract][Full Text] [Related]
59. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. Holm O; Simon FG Waste Manag; 2017 Jan; 59():229-236. PubMed ID: 27625178 [TBL] [Abstract][Full Text] [Related]
60. Municipal solid waste incineration (MSWI) fly ash composition analysis: A case study of combined chelatant-based washing treatment efficiency. Loginova E; Proskurnin M; Brouwers HJH J Environ Manage; 2019 Apr; 235():480-488. PubMed ID: 30710857 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]