BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33900913)

  • 1. Ultrasound Scatterer Density Classification Using Convolutional Neural Networks and Patch Statistics.
    Tehrani AKZ; Amiri M; Rosado-Mendez IM; Hall TJ; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2697-2706. PubMed ID: 33900913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Scatterer Number Density Segmentation of Ultrasound Images.
    Tehrani AKZ; Rosado-Mendez IM; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1169-1180. PubMed ID: 35044911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pilot Study on Scatterer Density Classification of Ultrasound Images Using Deep Neural Networks.
    Tehrani AKZ; Amiri M; Rosado-Mendez IM; Hall TJ; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2059-2062. PubMed ID: 33018410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-D H-Scan Ultrasound Imaging and Use of a Convolutional Neural Network for Scatterer Size Estimation.
    Tai H; Khairalseed M; Hoyt K
    Ultrasound Med Biol; 2020 Oct; 46(10):2810-2818. PubMed ID: 32653207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodality quantitative ultrasound envelope statistics imaging based support vector machines for characterizing tissue scatterer distribution patterns: Methods and application in detecting microwave-induced thermal lesions.
    Li S; Tsui PH; Wu W; Zhou Z; Wu S
    Ultrason Sonochem; 2024 Jul; 107():106910. PubMed ID: 38772312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a convolutional neural network and quantitative ultrasound for diagnosis of fatty liver.
    Nguyen TN; Podkowa AS; Park TH; Miller RJ; Do MN; Oelze ML
    Ultrasound Med Biol; 2021 Mar; 47(3):556-568. PubMed ID: 33358553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Estimation of Speckle Statistics Parametric Images.
    Tehrani AKZ; Rosado-Mendez IM; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3907-3910. PubMed ID: 36086035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional Neural Network-Based Speckle Tracking for Ultrasound Strain Elastography: An Unsupervised Learning Approach.
    Wen S; Peng B; Wei X; Luo J; Jiang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 May; 70(5):354-367. PubMed ID: 37022912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel coded excitation scheme to improve spatial and contrast resolution of quantitative ultrasound imaging.
    Sanchez JR; Pocci D; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2111-23. PubMed ID: 19942499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and Localization of Ultrasound Scatterers Using Convolutional Neural Networks.
    Youn J; Ommen ML; Stuart MB; Thomsen EV; Larsen NB; Jensen JA
    IEEE Trans Med Imaging; 2020 Dec; 39(12):3855-3867. PubMed ID: 32746130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound simulation with deformable and patient-specific scatterer maps.
    Starkov R; Zhang L; Bajka M; Tanner C; Goksel O
    Int J Comput Assist Radiol Surg; 2019 Sep; 14(9):1589-1599. PubMed ID: 31435812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of Ultrasound Images based on Scatterer Density using U-Net.
    Amiri M; Tehrani AKZ; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2063-2066. PubMed ID: 33018411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scatterer reconstruction and parametrization of homogeneous tissue for ultrasound image simulation.
    Mattausch O; Goksel O
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6350-3. PubMed ID: 26737745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging local scatterer concentrations by the Nakagami statistical model.
    Tsui PH; Chang CC
    Ultrasound Med Biol; 2007 Apr; 33(4):608-19. PubMed ID: 17343979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative ultrasonic characterization of diffuse scatterers in the presence of structures that produce coherent echoes.
    Luchies AC; Ghoshal G; O'Brien WD; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):893-904. PubMed ID: 22622974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Study of Raw Ultrasound Data Representations in Deep Learning to Classify Hepatic Steatosis.
    Sanabria SJ; Pirmoazen AM; Dahl J; Kamaya A; El Kaffas A
    Ultrasound Med Biol; 2022 Oct; 48(10):2060-2078. PubMed ID: 35914993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of focal liver lesions in CT images using convolutional neural networks with lesion information augmented patches and synthetic data augmentation.
    Lee H; Lee H; Hong H; Bae H; Lim JS; Kim J
    Med Phys; 2021 Sep; 48(9):5029-5046. PubMed ID: 34287951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep convolutional neural network-based scatterer density and resolution estimators in optical coherence tomography.
    Seesan T; Abd El-Sadek I; Mukherjee P; Zhu L; Oikawa K; Miyazawa A; Shen LT; Matsusaka S; Buranasiri P; Makita S; Yasuno Y
    Biomed Opt Express; 2022 Jan; 13(1):168-183. PubMed ID: 35154862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Network for Scatterer Distribution Estimation for Ultrasound Image Simulation.
    Zhang L; Vishnevskiy V; Goksel O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2553-2564. PubMed ID: 32822295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bi-Directional Semi-Supervised Training of Convolutional Neural Networks for Ultrasound Elastography Displacement Estimation.
    Tehrani AKZ; Sharifzadeh M; Boctor E; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1181-1190. PubMed ID: 35085077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.