These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331 [TBL] [Abstract][Full Text] [Related]
3. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies. Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007 [TBL] [Abstract][Full Text] [Related]
4. Statistical power of transcriptome-wide association studies. He R; Xue H; Pan W; Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062 [TBL] [Abstract][Full Text] [Related]
5. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies. Zeng P; Dai J; Jin S; Zhou X Hum Mol Genet; 2021 May; 30(10):939-951. PubMed ID: 33615361 [TBL] [Abstract][Full Text] [Related]
6. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
7. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression. Ndungu A; Payne A; Torres JM; van de Bunt M; McCarthy MI Am J Hum Genet; 2020 Feb; 106(2):188-201. PubMed ID: 31978332 [TBL] [Abstract][Full Text] [Related]
8. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits. Knutson KA; Pan W Hum Mol Genet; 2023 Apr; 32(8):1237-1251. PubMed ID: 36179104 [TBL] [Abstract][Full Text] [Related]
9. Opportunities and challenges for transcriptome-wide association studies. Wainberg M; Sinnott-Armstrong N; Mancuso N; Barbeira AN; Knowles DA; Golan D; Ermel R; Ruusalepp A; Quertermous T; Hao K; Björkegren JLM; Im HK; Pasaniuc B; Rivas MA; Kundaje A Nat Genet; 2019 Apr; 51(4):592-599. PubMed ID: 30926968 [TBL] [Abstract][Full Text] [Related]
10. Multitrait transcriptome-wide association study (TWAS) tests. Feng H; Mancuso N; Pasaniuc B; Kraft P Genet Epidemiol; 2021 Sep; 45(6):563-576. PubMed ID: 34082479 [TBL] [Abstract][Full Text] [Related]
12. METRO: Multi-ancestry transcriptome-wide association studies for powerful gene-trait association detection. Li Z; Zhao W; Shang L; Mosley TH; Kardia SLR; Smith JA; Zhou X Am J Hum Genet; 2022 May; 109(5):783-801. PubMed ID: 35334221 [TBL] [Abstract][Full Text] [Related]
13. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies. Lin Z; Xue H; Malakhov MM; Knutson KA; Pan W Hum Mol Genet; 2022 Jul; 31(14):2462-2470. PubMed ID: 35043938 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome-wide association study in UK Biobank Europeans identifies associations with blood cell traits. Rowland B; Venkatesh S; Tardaguila M; Wen J; Rosen JD; Tapia AL; Sun Q; Graff M; Vuckovic D; Lettre G; Sankaran VG; Voloudakis G; Roussos P; Huffman JE; Reiner AP; Soranzo N; Raffield LM; Li Y Hum Mol Genet; 2022 Jul; 31(14):2333-2347. PubMed ID: 35138379 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome-wide association studies accounting for colocalization using Egger regression. Barfield R; Feng H; Gusev A; Wu L; Zheng W; Pasaniuc B; Kraft P Genet Epidemiol; 2018 Jul; 42(5):418-433. PubMed ID: 29808603 [TBL] [Abstract][Full Text] [Related]
16. webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Cao C; Wang J; Kwok D; Cui F; Zhang Z; Zhao D; Li MJ; Zou Q Nucleic Acids Res; 2022 Jan; 50(D1):D1123-D1130. PubMed ID: 34669946 [TBL] [Abstract][Full Text] [Related]
17. TWAS Atlas: a curated knowledgebase of transcriptome-wide association studies. Lu M; Zhang Y; Yang F; Mai J; Gao Q; Xu X; Kang H; Hou L; Shang Y; Qain Q; Liu J; Jiang M; Zhang H; Bu C; Wang J; Zhang Z; Zhang Z; Zeng J; Li J; Xiao J Nucleic Acids Res; 2023 Jan; 51(D1):D1179-D1187. PubMed ID: 36243959 [TBL] [Abstract][Full Text] [Related]
18. Partitioning and aggregating cross-tissue and tissue-specific genetic effects to identify gene-trait associations. Song S; Wang L; Hou L; Liu JS Nat Commun; 2024 Jul; 15(1):5769. PubMed ID: 38982044 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome-wide association study identifies novel candidate susceptibility genes for migraine. Meyers TJ; Yin J; Herrera VA; Pressman AR; Hoffmann TJ; Schaefer C; Avins AL; Choquet H HGG Adv; 2023 Jul; 4(3):100211. PubMed ID: 37415806 [TBL] [Abstract][Full Text] [Related]
20. Meta-Analysis of Transcriptome-Wide Association Studies across 13 Brain Tissues Identified Novel Clusters of Genes Associated with Nicotine Addiction. Ye Z; Mo C; Ke H; Yan Q; Chen C; Kochunov P; Hong LE; Mitchell BD; Chen S; Ma T Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]