These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 33901829)
1. A kinetic evaluation and optimization study on NO Rahman ZU; Zhang J; Zhang L; Wang X; Yang Z; Tan H; Axelbaum RL J Environ Manage; 2021 Jul; 290():112690. PubMed ID: 33901829 [TBL] [Abstract][Full Text] [Related]
2. Detailed in-furnace measurements with reburning of superfine pulverized coal in high CO Shen J; Liu J; Deng S; Wang S; Chen B; Jiang X J Environ Sci (China); 2021 Jun; 104():326-334. PubMed ID: 33985736 [TBL] [Abstract][Full Text] [Related]
3. Effective methods of reduction of nitrogen oxides concentration during the natural gas combustion. Zajemska M; Musiał D; Poskart A Environ Technol; 2014; 35(5-8):602-10. PubMed ID: 24645439 [TBL] [Abstract][Full Text] [Related]
4. An Investigation of the Interaction between NO Choudhury NN; Padak B Environ Sci Technol; 2017 Nov; 51(21):12918-12924. PubMed ID: 28982004 [TBL] [Abstract][Full Text] [Related]
5. Identification of significant factors in reburning with coal volatiles. Zarnitz R; Pisupati S Environ Sci Technol; 2008 Mar; 42(6):2004-8. PubMed ID: 18409628 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal. Roy B; Chen L; Bhattacharya S Environ Sci Technol; 2014 Dec; 48(24):14844-50. PubMed ID: 25402169 [TBL] [Abstract][Full Text] [Related]
7. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions. Chen L; Bhattacharya S Environ Sci Technol; 2013 Feb; 47(3):1729-34. PubMed ID: 23301852 [TBL] [Abstract][Full Text] [Related]
8. Emission of typical pollutants (NO Moroń W; Ferens W; Wach J Environ Sci Pollut Res Int; 2021 Sep; 28(36):50683-50695. PubMed ID: 33966162 [TBL] [Abstract][Full Text] [Related]
9. Simulation of nitrogen transformation in pressurized oxy-fuel combustion of pulverized coal. Liang X; Wang Q; Luo Z; Zhang H; Li K; Feng Y; Shaikh AR; Cen J RSC Adv; 2018 Oct; 8(62):35690-35699. PubMed ID: 35547931 [TBL] [Abstract][Full Text] [Related]
10. Dried sludge reburning blended with calcium magnesium acetate addition in a fluidized bed combustor. Zhang LH; Li Z; Yang SM; Duan F Waste Manag; 2021 Mar; 123():120-130. PubMed ID: 33582399 [TBL] [Abstract][Full Text] [Related]
11. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control. Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260 [TBL] [Abstract][Full Text] [Related]
12. Experimental Study of NO Zan H; Chen X; Ma J; Liu D; Wu Y ACS Omega; 2020 Jul; 5(26):16037-16044. PubMed ID: 32656425 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic study on NO reduction by sludge reburning in a pilot scale cement precalciner with different CO Xiao X; Fang P; Huang JH; Tang ZJ; Chen XB; Wu HW; Cen CP; Tang ZX RSC Adv; 2019 Jul; 9(40):22863-22874. PubMed ID: 35514465 [TBL] [Abstract][Full Text] [Related]
14. Effect of oxy-combustion flue gas on mercury oxidation. Fernández-Miranda N; Lopez-Anton MA; Díaz-Somoano M; Martínez-Tarazona MR Environ Sci Technol; 2014 Jun; 48(12):7164-70. PubMed ID: 24877895 [TBL] [Abstract][Full Text] [Related]
15. Hot corrosion behaviors of TP347H and HR3C stainless steel with KCl deposit in oxy-biomass combustion. Zhang J; Rahman ZU; Wang X; Wang Z; Li P; Wang Y; Bate D; Zhao K; Tan H J Environ Manage; 2020 Jun; 263():110411. PubMed ID: 32174540 [TBL] [Abstract][Full Text] [Related]
16. Modeling of the reburning process using sewage sludge-derived syngas. Werle S Waste Manag; 2012 Apr; 32(4):753-8. PubMed ID: 22079251 [TBL] [Abstract][Full Text] [Related]
17. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations. Fu Z; Zhang S; Li X; Shao J; Wang K; Chen H Waste Manag; 2015 Apr; 38():149-56. PubMed ID: 25680237 [TBL] [Abstract][Full Text] [Related]
18. Experiment and mechanism investigation on advanced reburning for NO(x) reduction: influence of CO and temperature. Wang ZH; Zhou JH; Zhang YW; Lu ZM; Fan JR; Cen KF J Zhejiang Univ Sci B; 2005 Mar; 6(3):187-94. PubMed ID: 15682503 [TBL] [Abstract][Full Text] [Related]
19. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas. Park M; Shim SH; Jeong SH; Oh KJ; Lee SS J Air Waste Manag Assoc; 2017 Apr; 67(4):402-411. PubMed ID: 27649808 [TBL] [Abstract][Full Text] [Related]
20. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite. Gao Y; Tahmasebi A; Dou J; Yu J Bioresour Technol; 2016 May; 207():276-84. PubMed ID: 26894568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]