These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 33901914)
1. Effects of different temperatures and pH values on volatile fatty acids production during codigestion of food waste and thermal-hydrolysed sewage sludge and subsequent volatile fatty acids for polyhydroxyalkanoates production. Gong X; Wu M; Jiang Y; Wang H Bioresour Technol; 2021 Aug; 333():125149. PubMed ID: 33901914 [TBL] [Abstract][Full Text] [Related]
2. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH. Yu P; Tu W; Wu M; Zhang Z; Wang H Bioresour Technol; 2021 Jul; 332():125116. PubMed ID: 33857863 [TBL] [Abstract][Full Text] [Related]
3. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time. Khatami K; Atasoy M; Ludtke M; Baresel C; Eyice Ö; Cetecioglu Z Chemosphere; 2021 Jul; 275():129981. PubMed ID: 33662716 [TBL] [Abstract][Full Text] [Related]
4. Production of propionic acid-enriched volatile fatty acids from co-fermentation liquid of sewage sludge and food waste using Propionibacterium acidipropionici. Li X; Mu H; Chen Y; Zheng X; Luo J; Zhao S Water Sci Technol; 2013; 68(9):2061-6. PubMed ID: 24225109 [TBL] [Abstract][Full Text] [Related]
5. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612 [TBL] [Abstract][Full Text] [Related]
6. Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production. Vidal-Antich C; Perez-Esteban N; Astals S; Peces M; Mata-Alvarez J; Dosta J Sci Total Environ; 2021 Feb; 757():143763. PubMed ID: 33288258 [TBL] [Abstract][Full Text] [Related]
7. The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge. Tao Z; Yang Q; Yao F; Huang X; Wu Y; Du M; Chen S; Liu X; Li X; Wang D Bioresour Technol; 2020 Feb; 297():122428. PubMed ID: 31786038 [TBL] [Abstract][Full Text] [Related]
8. Temperature-driven carboxylic acid production from waste activated sludge and food waste: Co-fermentation performance and microbial dynamics. Perez-Esteban N; Vives-Egea J; Peces M; Dosta J; Astals S Waste Manag; 2024 Apr; 178():176-185. PubMed ID: 38401431 [TBL] [Abstract][Full Text] [Related]
9. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes. Chen H; Meng H; Nie Z; Zhang M Bioresour Technol; 2013 Jan; 128():533-8. PubMed ID: 23201909 [TBL] [Abstract][Full Text] [Related]
10. Volatile fatty acids production from biowaste at mechanical-biological treatment plants: Focusing on fermentation temperature. Fernández-Domínguez D; Astals S; Peces M; Frison N; Bolzonella D; Mata-Alvarez J; Dosta J Bioresour Technol; 2020 Oct; 314():123729. PubMed ID: 32622279 [TBL] [Abstract][Full Text] [Related]
11. Performance of production of polyhydroxyalkanoates from food waste fermentation with Rhodopseudomonas palustris. Dan T; Jing H; Shen T; Zhu J; Liu Y Bioresour Technol; 2023 Oct; 385():129165. PubMed ID: 37182681 [TBL] [Abstract][Full Text] [Related]
12. From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling. Esteban-Gutiérrez M; Garcia-Aguirre J; Irizar I; Aymerich E Waste Manag; 2018 Jul; 77():203-212. PubMed ID: 30008410 [TBL] [Abstract][Full Text] [Related]
13. Upgrading volatile fatty acids production through anaerobic co-fermentation of mushroom residue and sewage sludge: Performance evaluation and kinetic analysis. Fang W; Zhang P; Zhang T; Requeson DC; Poser M J Environ Manage; 2019 Jul; 241():612-618. PubMed ID: 30962005 [TBL] [Abstract][Full Text] [Related]
14. Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids. Xiong H; Chen J; Wang H; Shi H Bioresour Technol; 2012 Sep; 119():285-92. PubMed ID: 22750494 [TBL] [Abstract][Full Text] [Related]
15. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation. Zhang L; Loh KC; Dai Y; Tong YW Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405 [TBL] [Abstract][Full Text] [Related]
16. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste. Slezak R; Grzelak J; Krzystek L; Ledakowicz S Environ Technol; 2021 Nov; 42(27):4269-4278. PubMed ID: 32255721 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Wu QL; Guo WQ; Zheng HS; Luo HC; Feng XC; Yin RL; Ren NQ Bioresour Technol; 2016 Sep; 216():653-60. PubMed ID: 27289056 [TBL] [Abstract][Full Text] [Related]
18. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388 [TBL] [Abstract][Full Text] [Related]
19. Effect of High Strength Food Wastes on Anaerobic Codigestion of Sewage Sludge. Vaidya R; Boardman GD; Novak JT; Wimmer R; Hanna M Water Environ Res; 2018 Apr; 90(4):293-306. PubMed ID: 28766488 [TBL] [Abstract][Full Text] [Related]
20. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Moretto G; Russo I; Bolzonella D; Pavan P; Majone M; Valentino F Water Res; 2020 Mar; 170():115371. PubMed ID: 31835138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]