BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33901948)

  • 1. Effects of multiple injections on the transport of CMC-nZVI in saturated sand columns.
    Wu W; Han L; Nie X; Gu M; Li J; Chen M
    Sci Total Environ; 2021 Aug; 784():147160. PubMed ID: 33901948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of nanoscale zero-valent iron in saturated porous media: Effects of grain size, surface metal oxides, and sulfidation.
    Chen B; Lv N; Xu W; Gong L; Sun T; Liang L; Gao B; He F
    Chemosphere; 2023 Feb; 313():137512. PubMed ID: 36495971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Naja G; Ghoshal S
    J Contam Hydrol; 2010 Nov; 118(3-4):143-51. PubMed ID: 20937540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow.
    Li J; Ghoshal S
    Chemosphere; 2016 Feb; 144():1398-407. PubMed ID: 26498094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfidation enhances stability and mobility of carboxymethyl cellulose stabilized nanoscale zero-valent iron in saturated porous media.
    Gong L; Shi S; Lv N; Xu W; Ye Z; Gao B; O'Carroll DM; He F
    Sci Total Environ; 2020 May; 718():137427. PubMed ID: 32105934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2012 Apr; 46(6):1735-44. PubMed ID: 22244967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand.
    Basnet M; Di Tommaso C; Ghoshal S; Tufenkji N
    Water Res; 2015 Jan; 68():354-63. PubMed ID: 25462742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of carboxymethyl cellulose-coated zerovalent iron nanoparticles in a sand tank: Effects of sand grain size, nanoparticle concentration and injection velocity.
    Li J; Rajajayavel SRC; Ghoshal S
    Chemosphere; 2016 May; 150():8-16. PubMed ID: 26891351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of polymer stabilized nano-scale zero-valent iron in porous media.
    Mondal PK; Furbacher PD; Cui Z; Krol MM; Sleep BE
    J Contam Hydrol; 2018 May; 212():65-77. PubMed ID: 29223368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and Dynamic Aggregation of Bare and Stabilized Zero-Valent Iron Nanoparticles under Variable Solution Chemistry.
    Ibrahim HM; Awad M; Al-Farraj AS; Al-Turki AM
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 31978987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. nZVI injection into variably saturated soils: Field and modeling study.
    Chowdhury AI; Krol MM; Kocur CM; Boparai HK; Weber KP; Sleep BE; O'Carroll DM
    J Contam Hydrol; 2015 Dec; 183():16-28. PubMed ID: 26496622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.
    Laumann S; Micić V; Hofmann T
    Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field-scale investigation of nanoscale zero-valent iron (NZVI) injection parameters for enhanced delivery of NZVI particles to groundwater.
    Ahn JY; Kim C; Jun SC; Hwang I
    Water Res; 2021 Sep; 202():117402. PubMed ID: 34273775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
    Busch J; Meißner T; Potthoff A; Oswald SE
    J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron.
    Dong H; Xie Y; Zeng G; Tang L; Liang J; He Q; Zhao F; Zeng Y; Wu Y
    Chemosphere; 2016 Feb; 144():1682-9. PubMed ID: 26519799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of permeability on nanoscale zero-valent iron particle transport in saturated homogeneous and heterogeneous porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17200-9. PubMed ID: 27215990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subsurface transport of carboxymethyl cellulose (CMC)-stabilized nanoscale zero valent iron (nZVI): Numerical and statistical analysis.
    Asad MA; Khan UT; Krol MM
    J Contam Hydrol; 2021 Dec; 243():103870. PubMed ID: 34418819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of enhanced hexavalent chromium removal from groundwater by sodium carboxymethyl cellulose stabilized zerovalent iron nanoparticles.
    Yu Q; Guo J; Muhammad Y; Li Q; Lu Z; Yun J; Liang Y
    J Environ Manage; 2020 Dec; 276():111245. PubMed ID: 32862116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.