These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33901948)

  • 41. Field Scale Mobility and Transport Manipulation of Carbon-Supported Nanoscale Zerovalent Iron in Fractured Media.
    Cohen M; Weisbrod N
    Environ Sci Technol; 2018 Jul; 52(14):7849-7858. PubMed ID: 29900735
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater.
    Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE
    J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphate removal from aqueous solutions by nanoscale zero-valent iron.
    Wu D; Shen Y; Ding A; Qiu M; Yang Q; Zheng S
    Environ Technol; 2013; 34(17-20):2663-9. PubMed ID: 24527628
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column.
    Hosseini SM; Tosco T
    Water Res; 2013 Jan; 47(1):326-38. PubMed ID: 23141767
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media.
    Dong H; Zeng G; Zhang C; Liang J; Ahmad K; Xu P; He X; Lai M
    J Environ Sci (China); 2015 Jun; 32():180-8. PubMed ID: 26040744
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media.
    Kanel SR; Choi H
    Water Sci Technol; 2007; 55(1-2):157-62. PubMed ID: 17305135
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns.
    Saleh N; Kim HJ; Phenrat T; Matyjaszewski K; Tilton RD; Lowry GV
    Environ Sci Technol; 2008 May; 42(9):3349-55. PubMed ID: 18522117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI).
    Fu R; Yang Y; Xu Z; Zhang X; Guo X; Bi D
    Chemosphere; 2015 Nov; 138():726-34. PubMed ID: 26267258
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ligand-mediated contaminant degradation by bare and carboxymethyl cellulose-coated bimetallic palladium-zero valent iron nanoparticles in high salinity environments.
    Ma X; He D; Jones AM; Waite TD; An T
    J Environ Sci (China); 2019 Mar; 77():303-311. PubMed ID: 30573094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Escherichia coli and phosphate interplay mediates transport of nanoscale zero-valent iron synthesized by green tea in water-saturated porous media.
    Jing P; Peng L; Xu N; Feng Y; Liu X
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112783. PubMed ID: 36049251
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing the capacity of zero valent iron nanofluids to remediate NAPL-polluted porous media.
    Tsakiroglou C; Terzi K; Sikinioti-Lock A; Hajdu K; Aggelopoulos C
    Sci Total Environ; 2016 Sep; 563-564():866-78. PubMed ID: 26875604
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of hydrogen gas production, trapping and bubble-facilitated transport during nanoscale zero-valent iron (nZVI) injection in porous media.
    Mohammed O; Mumford KG; Sleep BE
    J Contam Hydrol; 2020 Oct; 234():103677. PubMed ID: 32663719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Long-Term Field Study of Microbial Community and Dechlorinating Activity Following Carboxymethyl Cellulose-Stabilized Nanoscale Zero-Valent Iron Injection.
    Kocur CM; Lomheim L; Molenda O; Weber KP; Austrins LM; Sleep BE; Boparai HK; Edwards EA; O'Carroll DM
    Environ Sci Technol; 2016 Jul; 50(14):7658-70. PubMed ID: 27305345
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contributions of Abiotic and Biotic Dechlorination Following Carboxymethyl Cellulose Stabilized Nanoscale Zero Valent Iron Injection.
    Kocur CM; Lomheim L; Boparai HK; Chowdhury AI; Weber KP; Austrins LM; Edwards EA; Sleep BE; O'Carroll DM
    Environ Sci Technol; 2015 Jul; 49(14):8648-56. PubMed ID: 26090687
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept.
    Černík M; Nosek J; Filip J; Hrabal J; Elliott DW; Zbořil R
    Water Res; 2019 May; 154():361-369. PubMed ID: 30822596
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of activated carbon fiber supported nanoscale zero-valent iron for chromium (VI) removal from groundwater in a permeable reactive column.
    Qu G; Kou L; Wang T; Liang D; Hu S
    J Environ Manage; 2017 Oct; 201():378-387. PubMed ID: 28697381
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material.
    Kanel SR; Greneche JM; Choi H
    Environ Sci Technol; 2006 Mar; 40(6):2045-50. PubMed ID: 16570634
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media.
    Wei CJ; Li XY
    Water Sci Technol; 2013; 68(10):2287-93. PubMed ID: 24292480
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of the modification sequence on the reactivity, electron selectivity, and mobility of sulfidated and CMC-stabilized nanoscale zerovalent iron.
    Kong X; Xuan L; Fu Y; Yuan F; Qin C
    Sci Total Environ; 2021 Nov; 793():148487. PubMed ID: 34166902
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fate and transport of sulfidated nano zerovalent iron (S-nZVI): A field study.
    Nunez Garcia A; Boparai HK; de Boer CV; Chowdhury AIA; Kocur CMD; Austrins LM; Herrera J; O'Carroll DM
    Water Res; 2020 Mar; 170():115319. PubMed ID: 31790885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.