These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 33902402)
1. Hybrid double-network hydrogel for highly stretchable, excellent sensitive, stabilized, and transparent strain sensors. Xia M; Pan S; Li H; Yi X; Zhan Y; Sun Z; Jiang X; Zhang Y J Biomater Sci Polym Ed; 2021 Aug; 32(12):1548-1563. PubMed ID: 33902402 [TBL] [Abstract][Full Text] [Related]
2. Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor. Li X; Li X; Yan M; Wang Q Int J Biol Macromol; 2023 Jul; 242(Pt 1):124746. PubMed ID: 37148945 [TBL] [Abstract][Full Text] [Related]
3. Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels. Li R; Ren J; Zhang M; Li M; Li Y; Yang W Biomacromolecules; 2024 Feb; 25(2):614-625. PubMed ID: 38241010 [TBL] [Abstract][Full Text] [Related]
4. A chitosan-based conductive double network hydrogel doped by tannic acid-reduced graphene oxide with excellent stretchability and high sensitivity for wearable strain sensors. Song Y; Xing L; Zou X; Zhang C; Huang Z; Liu W; Wang J Int J Biol Macromol; 2024 Feb; 258(Pt 1):128861. PubMed ID: 38114012 [TBL] [Abstract][Full Text] [Related]
5. Dual-Sensing, Stretchable, Fatigue-Resistant, Adhesive, and Conductive Hydrogels Used as Flexible Sensors for Human Motion Monitoring. Kang B; Yan X; Zhao Z; Song S Langmuir; 2022 Jun; 38(22):7013-7023. PubMed ID: 35613322 [TBL] [Abstract][Full Text] [Related]
6. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. Huang F; Wei W; Fan Q; Li L; Zhao M; Zhou Z J Colloid Interface Sci; 2022 Jun; 615():215-226. PubMed ID: 35131502 [TBL] [Abstract][Full Text] [Related]
7. Highly transparent, self-healing, injectable and self-adhesive chitosan/polyzwitterion-based double network hydrogel for potential 3D printing wearable strain sensor. Zhang J; Chen L; Shen B; Wang Y; Peng P; Tang F; Feng J Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111298. PubMed ID: 32919659 [TBL] [Abstract][Full Text] [Related]
8. A Highly Mechanical, Conductive, and Cryophylactic Double Network Hydrogel for Flexible and Low-Temperature Tolerant Strain Sensors. Diao Q; Liu H; Yang Y Gels; 2022 Jul; 8(7):. PubMed ID: 35877509 [TBL] [Abstract][Full Text] [Related]
10. Ultrastretchable and adhesive agarose/Ti Lin T; Li S; Hu Y; Sheng L; Chen X; Que X; Peng J; Ma H; Li J; Zhai M Carbohydr Polym; 2022 Aug; 290():119506. PubMed ID: 35550781 [TBL] [Abstract][Full Text] [Related]
11. High-Strength, Conductive, Antifouling, and Antibacterial Hydrogels for Wearable Strain Sensors. Chen D; Zhao X; Gao H; Ren G; Luo J; Wang H; Zha C; Yang K; Jia P ACS Biomater Sci Eng; 2022 Jun; 8(6):2624-2635. PubMed ID: 35512312 [TBL] [Abstract][Full Text] [Related]
12. Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host-Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions. Liu X; Ren Z; Liu F; Zhao L; Ling Q; Gu H ACS Appl Mater Interfaces; 2021 Mar; 13(12):14612-14622. PubMed ID: 33723988 [TBL] [Abstract][Full Text] [Related]
13. Freezing-Tolerant, Highly Sensitive Strain and Pressure Sensors Assembled from Ionic Conductive Hydrogels with Dynamic Cross-Links. Liu H; Wang X; Cao Y; Yang Y; Yang Y; Gao Y; Ma Z; Wang J; Wang W; Wu D ACS Appl Mater Interfaces; 2020 Jun; 12(22):25334-25344. PubMed ID: 32422039 [TBL] [Abstract][Full Text] [Related]
14. Using chitosan nanofibers to synergistically construct a highly stretchable multi-functional liquid mental-based hydrogel for assembling strain sensor with high sensitivity and broad working range. Wang B; Wang X; Liu W; Song Z; Wang H; Li G; Yu D; Liu X; Ge S Int J Biol Macromol; 2024 Feb; 259(Pt 1):129225. PubMed ID: 38184053 [TBL] [Abstract][Full Text] [Related]
15. Multifunctional acetylated distarch phosphate based conducting hydrogel with high stretchability, ultralow hysteresis and fast response for wearable strain sensors. Wang Y; Song L; Wang Q; Wang L; Li S; Du H; Wang C; Wang Y; Xue P; Nie WC; Wang X; Tang S Carbohydr Polym; 2023 Oct; 318():121106. PubMed ID: 37479435 [TBL] [Abstract][Full Text] [Related]
16. Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors. Peng X; Wang W; Yang W; Chen J; Peng Q; Wang T; Yang D; Wang J; Zhang H; Zeng H J Colloid Interface Sci; 2022 Jul; 618():111-120. PubMed ID: 35338921 [TBL] [Abstract][Full Text] [Related]
17. A self-healing and self-adhesive chitosan based ion-conducting hydrogel sensor by ultrafast polymerization. Li J; Yang Z; Jiang Z; Ni M; Xu M Int J Biol Macromol; 2022 Jun; 209(Pt B):1975-1984. PubMed ID: 35500766 [TBL] [Abstract][Full Text] [Related]
18. Fe Sun X; Wang H; Ding Y; Yao Y; Liu Y; Tang J J Mater Chem B; 2022 Mar; 10(9):1442-1452. PubMed ID: 35188167 [TBL] [Abstract][Full Text] [Related]
19. Highly Adhesive, Stretchable, and Antifreezing Hydrogel with Excellent Mechanical Properties for Sensitive Motion Sensors and Temperature-/Humidity-Driven Actuators. He Z; Zhou Z; Yuan W ACS Appl Mater Interfaces; 2022 Aug; 14(33):38205-38215. PubMed ID: 35952384 [TBL] [Abstract][Full Text] [Related]
20. Novel Uracil-Functionalized Poly(ionic liquid) Hydrogel: Highly Stretchable and Sensitive as a Direct Wearable Ionic Skin for Human Motion Detection. Fu D; Huang G; Xie Y; Zheng M; Feng J; Kan K; Shen J ACS Appl Mater Interfaces; 2023 Mar; 15(8):11062-11075. PubMed ID: 36787995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]