These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 33902434)
1. The evolution of opsin genes in five species of mirid bugs: duplication of long-wavelength opsins and loss of blue-sensitive opsins. Xu P; Lu B; Chao J; Holdbrook R; Liang G; Lu Y BMC Ecol Evol; 2021 Apr; 21(1):66. PubMed ID: 33902434 [TBL] [Abstract][Full Text] [Related]
2. Duplication and expression of horizontally transferred polygalacturonase genes is associated with host range expansion of mirid bugs. Xu P; Lu B; Liu J; Chao J; Donkersley P; Holdbrook R; Lu Y BMC Evol Biol; 2019 Jan; 19(1):12. PubMed ID: 30626314 [TBL] [Abstract][Full Text] [Related]
3. The role of tetradecane in the identification of host plants by the mirid bugs Yin H; Li W; Xu M; Xu D; Wan P Front Physiol; 2022; 13():1061817. PubMed ID: 36561212 [TBL] [Abstract][Full Text] [Related]
4. The evolution of insect visual opsin genes with specific consideration of the influence of ocelli and life history traits. Guignard Q; Allison JD; Slippers B BMC Ecol Evol; 2022 Jan; 22(1):2. PubMed ID: 34996358 [TBL] [Abstract][Full Text] [Related]
5. Retention of duplicated long-wavelength opsins in mosquito lineages by positive selection and differential expression. Giraldo-Calderón GI; Zanis MJ; Hill CA BMC Evol Biol; 2017 Mar; 17(1):84. PubMed ID: 28320313 [TBL] [Abstract][Full Text] [Related]
6. Identification and functional characterization of sex pheromone receptors in mirid bugs (Heteroptera: Miridae). Zhang S; Yan S; Zhang Z; Cao S; Li B; Liu Y; Wang G Insect Biochem Mol Biol; 2021 Sep; 136():103621. PubMed ID: 34233213 [TBL] [Abstract][Full Text] [Related]
7. Characterization and Comparative Analysis of Olfactory Receptor Co-Receptor Orco Orthologs Among Five Mirid Bug Species. Wang Q; Wang Q; Zhou YL; Shan S; Cui HH; Xiao Y; Dong K; Khashaveh A; Sun L; Zhang YJ Front Physiol; 2018; 9():158. PubMed ID: 29556202 [TBL] [Abstract][Full Text] [Related]
8. Early duplication and functional diversification of the opsin gene family in insects. Spaethe J; Briscoe AD Mol Biol Evol; 2004 Aug; 21(8):1583-94. PubMed ID: 15155799 [TBL] [Abstract][Full Text] [Related]
9. Jewel Beetle Opsin Duplication and Divergence Is the Mechanism for Diverse Spectral Sensitivities. Sharkey CR; Blanco J; Lord NP; Wardill TJ Mol Biol Evol; 2023 Feb; 40(2):. PubMed ID: 36721951 [TBL] [Abstract][Full Text] [Related]
10. Opsin Gene Duplication in Lepidoptera: Retrotransposition, Sex Linkage, and Gene Expression. Mulhair PO; Crowley L; Boyes DH; Lewis OT; Holland PWH Mol Biol Evol; 2023 Nov; 40(11):. PubMed ID: 37935057 [TBL] [Abstract][Full Text] [Related]
11. A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae). Lord NP; Plimpton RL; Sharkey CR; Suvorov A; Lelito JP; Willardson BM; Bybee SM BMC Evol Biol; 2016 May; 16(1):107. PubMed ID: 27193495 [TBL] [Abstract][Full Text] [Related]
12. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution. Feuda R; Marlétaz F; Bentley MA; Holland PW Genome Biol Evol; 2016 Feb; 8(3):579-87. PubMed ID: 26865071 [TBL] [Abstract][Full Text] [Related]
13. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers. Wang J; Zhang L; Zhang QL; Zhou MQ; Wang XT; Yang XZ; Yuan ML PeerJ; 2017; 5():e3661. PubMed ID: 28791201 [TBL] [Abstract][Full Text] [Related]
14. Use of zoophytophagous mirid bugs in horticultural crops: Current challenges and future perspectives. Pérez-Hedo M; Riahi C; Urbaneja A Pest Manag Sci; 2021 Jan; 77(1):33-42. PubMed ID: 32776672 [TBL] [Abstract][Full Text] [Related]
15. Life table parameters of three Mirid Bug (Adelphocoris) species (Hemiptera: Miridae) under contrasted relative humidity regimes. Pan H; Liu B; Lu Y; Desneux N PLoS One; 2014; 9(12):e115878. PubMed ID: 25541705 [TBL] [Abstract][Full Text] [Related]
16. Opsins have evolved under the permanent heterozygote model: insights from phylotranscriptomics of Odonata. Suvorov A; Jensen NO; Sharkey CR; Fujimoto MS; Bodily P; Wightman HM; Ogden TH; Clement MJ; Bybee SM Mol Ecol; 2017 Mar; 26(5):1306-1322. PubMed ID: 27758014 [TBL] [Abstract][Full Text] [Related]
17. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057 [TBL] [Abstract][Full Text] [Related]
18. Functional diversification of lepidopteran opsins following gene duplication. Briscoe AD Mol Biol Evol; 2001 Dec; 18(12):2270-9. PubMed ID: 11719576 [TBL] [Abstract][Full Text] [Related]
19. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders. Koyanagi M; Nagata T; Katoh K; Yamashita S; Tokunaga F J Mol Evol; 2008 Feb; 66(2):130-7. PubMed ID: 18217181 [TBL] [Abstract][Full Text] [Related]
20. The molecular basis of color vision in colorful fish: four long wave-sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites. Ward MN; Churcher AM; Dick KJ; Laver CR; Owens GL; Polack MD; Ward PR; Breden F; Taylor JS BMC Evol Biol; 2008 Jul; 8():210. PubMed ID: 18638376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]