BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33902434)

  • 1. The evolution of opsin genes in five species of mirid bugs: duplication of long-wavelength opsins and loss of blue-sensitive opsins.
    Xu P; Lu B; Chao J; Holdbrook R; Liang G; Lu Y
    BMC Ecol Evol; 2021 Apr; 21(1):66. PubMed ID: 33902434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Duplication and expression of horizontally transferred polygalacturonase genes is associated with host range expansion of mirid bugs.
    Xu P; Lu B; Liu J; Chao J; Donkersley P; Holdbrook R; Lu Y
    BMC Evol Biol; 2019 Jan; 19(1):12. PubMed ID: 30626314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of tetradecane in the identification of host plants by the mirid bugs
    Yin H; Li W; Xu M; Xu D; Wan P
    Front Physiol; 2022; 13():1061817. PubMed ID: 36561212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolution of insect visual opsin genes with specific consideration of the influence of ocelli and life history traits.
    Guignard Q; Allison JD; Slippers B
    BMC Ecol Evol; 2022 Jan; 22(1):2. PubMed ID: 34996358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention of duplicated long-wavelength opsins in mosquito lineages by positive selection and differential expression.
    Giraldo-Calderón GI; Zanis MJ; Hill CA
    BMC Evol Biol; 2017 Mar; 17(1):84. PubMed ID: 28320313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and functional characterization of sex pheromone receptors in mirid bugs (Heteroptera: Miridae).
    Zhang S; Yan S; Zhang Z; Cao S; Li B; Liu Y; Wang G
    Insect Biochem Mol Biol; 2021 Sep; 136():103621. PubMed ID: 34233213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and Comparative Analysis of Olfactory Receptor Co-Receptor Orco Orthologs Among Five Mirid Bug Species.
    Wang Q; Wang Q; Zhou YL; Shan S; Cui HH; Xiao Y; Dong K; Khashaveh A; Sun L; Zhang YJ
    Front Physiol; 2018; 9():158. PubMed ID: 29556202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early duplication and functional diversification of the opsin gene family in insects.
    Spaethe J; Briscoe AD
    Mol Biol Evol; 2004 Aug; 21(8):1583-94. PubMed ID: 15155799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opsin Gene Duplication in Lepidoptera: Retrotransposition, Sex Linkage, and Gene Expression.
    Mulhair PO; Crowley L; Boyes DH; Lewis OT; Holland PWH
    Mol Biol Evol; 2023 Nov; 40(11):. PubMed ID: 37935057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jewel Beetle Opsin Duplication and Divergence Is the Mechanism for Diverse Spectral Sensitivities.
    Sharkey CR; Blanco J; Lord NP; Wardill TJ
    Mol Biol Evol; 2023 Feb; 40(2):. PubMed ID: 36721951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae).
    Lord NP; Plimpton RL; Sharkey CR; Suvorov A; Lelito JP; Willardson BM; Bybee SM
    BMC Evol Biol; 2016 May; 16(1):107. PubMed ID: 27193495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution.
    Feuda R; Marlétaz F; Bentley MA; Holland PW
    Genome Biol Evol; 2016 Feb; 8(3):579-87. PubMed ID: 26865071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers.
    Wang J; Zhang L; Zhang QL; Zhou MQ; Wang XT; Yang XZ; Yuan ML
    PeerJ; 2017; 5():e3661. PubMed ID: 28791201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of zoophytophagous mirid bugs in horticultural crops: Current challenges and future perspectives.
    Pérez-Hedo M; Riahi C; Urbaneja A
    Pest Manag Sci; 2021 Jan; 77(1):33-42. PubMed ID: 32776672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life table parameters of three Mirid Bug (Adelphocoris) species (Hemiptera: Miridae) under contrasted relative humidity regimes.
    Pan H; Liu B; Lu Y; Desneux N
    PLoS One; 2014; 9(12):e115878. PubMed ID: 25541705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opsins have evolved under the permanent heterozygote model: insights from phylotranscriptomics of Odonata.
    Suvorov A; Jensen NO; Sharkey CR; Fujimoto MS; Bodily P; Wightman HM; Ogden TH; Clement MJ; Bybee SM
    Mol Ecol; 2017 Mar; 26(5):1306-1322. PubMed ID: 27758014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes.
    Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD
    J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional diversification of lepidopteran opsins following gene duplication.
    Briscoe AD
    Mol Biol Evol; 2001 Dec; 18(12):2270-9. PubMed ID: 11719576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders.
    Koyanagi M; Nagata T; Katoh K; Yamashita S; Tokunaga F
    J Mol Evol; 2008 Feb; 66(2):130-7. PubMed ID: 18217181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular basis of color vision in colorful fish: four long wave-sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites.
    Ward MN; Churcher AM; Dick KJ; Laver CR; Owens GL; Polack MD; Ward PR; Breden F; Taylor JS
    BMC Evol Biol; 2008 Jul; 8():210. PubMed ID: 18638376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.