These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 33902500)
1. A lattice topology optimization of cervical interbody fusion cage and finite element comparison with ZK60 and Ti-6Al-4V cages. Sun J; Wang Q; Cai D; Gu W; Ma Y; Sun Y; Wei Y; Yuan F BMC Musculoskelet Disord; 2021 Apr; 22(1):390. PubMed ID: 33902500 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical Evaluation of a Novel S-Type, Dynamic Zero-Profile Cage Design for Anterior Cervical Discectomy and Fusion with Variations in Bone Graft Shape: A Finite Element Analysis. Manickam PS; Roy S; Shetty GM World Neurosurg; 2021 Oct; 154():e199-e214. PubMed ID: 34246827 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical comparison of bioabsorbable cervical spine interbody fusion cages. Pflugmacher R; Schleicher P; Gumnior S; Turan O; Scholz M; Eindorf T; Haas NP; Kandziora F Spine (Phila Pa 1976); 2004 Aug; 29(16):1717-22. PubMed ID: 15303013 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical Analysis of Porous Additive Manufactured Cages for Lateral Lumbar Interbody Fusion: A Finite Element Analysis. Zhang Z; Li H; Fogel GR; Liao Z; Li Y; Liu W World Neurosurg; 2018 Mar; 111():e581-e591. PubMed ID: 29288855 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical comparison of cervical spine interbody fusion cages. Kandziora F; Pflugmacher R; Schäfer J; Born C; Duda G; Haas NP; Mittlmeier T Spine (Phila Pa 1976); 2001 Sep; 26(17):1850-7. PubMed ID: 11568693 [TBL] [Abstract][Full Text] [Related]
6. Subsidence and fusion performance of a 3D-printed porous interbody cage with stress-optimized body lattice and microporous endplates - a comprehensive mechanical and biological analysis. Fogel G; Martin N; Lynch K; Pelletier MH; Wills D; Wang T; Walsh WR; Williams GM; Malik J; Peng Y; Jekir M Spine J; 2022 Jun; 22(6):1028-1037. PubMed ID: 35017054 [TBL] [Abstract][Full Text] [Related]
7. Can an Endplate-conformed Cervical Cage Provide a Better Biomechanical Environment than a Typical Non-conformed Cage?: A Finite Element Model and Cadaver Study. Zhang F; Xu HC; Yin B; Xia XL; Ma XS; Wang HL; Yin J; Shao MH; Lyu FZ; Jiang JY Orthop Surg; 2016 Aug; 8(3):367-76. PubMed ID: 27627721 [TBL] [Abstract][Full Text] [Related]
8. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages. Zhang Z; Li H; Fogel GR; Xiang D; Liao Z; Liu W Comput Biol Med; 2018 Apr; 95():167-174. PubMed ID: 29501735 [TBL] [Abstract][Full Text] [Related]
9. Bioabsorbable interbody cages in a sheep cervical spine fusion model. Kandziora F; Pflugmacher R; Scholz M; Eindorf T; Schnake KJ; Haas NP Spine (Phila Pa 1976); 2004 Sep; 29(17):1845-55; discussion 1856. PubMed ID: 15534403 [TBL] [Abstract][Full Text] [Related]
10. [Application of a stand-alone interbody fusion cage based on a novel porous TiO2/glass ceramic--2: Biomechanical evaluation after implantation in the sheep cervical spine]. Korinth MC; Hero T; Pandorf T; Zell D Biomed Tech (Berl); 2005 Apr; 50(4):111-8. PubMed ID: 15884708 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of bioabsorbable multiamino acid copolymer/α-tri-calcium phosphate interbody fusion cages in a goat model. Chunguang Z; Yueming S; Chongqi T; Hong D; Fuxing P; Yonggang Y; Hong L Spine (Phila Pa 1976); 2011 Dec; 36(25):E1615-22. PubMed ID: 21270683 [TBL] [Abstract][Full Text] [Related]
12. Ti2448 pedicle screw system augmentation for posterior lumbar interbody fusion. Wang Z; Fu S; Wu ZX; Zhang Y; Lei W Spine (Phila Pa 1976); 2013 Nov; 38(23):2008-15. PubMed ID: 23921332 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical evaluation of autologous bone-cage in posterior lumbar interbody fusion: a finite element analysis. Zhu H; Zhong W; Zhang P; Liu X; Huang J; Liu F; Li J BMC Musculoskelet Disord; 2020 Jun; 21(1):379. PubMed ID: 32534573 [TBL] [Abstract][Full Text] [Related]
14. Cage-screw and anterior plating combination reduces the risk of micromotion and subsidence in multilevel anterior cervical discectomy and fusion-a finite element study. Lin M; Shapiro SZ; Doulgeris J; Engeberg ED; Tsai CT; Vrionis FD Spine J; 2021 May; 21(5):874-882. PubMed ID: 33460810 [TBL] [Abstract][Full Text] [Related]
15. A Dynamic Interbody Cage Improves Bone Formation in Anterior Cervical Surgery: A Porcine Biomechanical Study. Yang SH; Xiao FR; Lai DM; Wei CK; Tsuang FY Clin Orthop Relat Res; 2021 Nov; 479(11):2547-2558. PubMed ID: 34343157 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical effect of endplate defects on the intermediate vertebral bone in consecutive two-level anterior cervical discectomy and fusion: a finite element analysis. Zhang J; Chen W; Weng R; Liang D; Jiang X; Lin H BMC Musculoskelet Disord; 2023 May; 24(1):407. PubMed ID: 37217909 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical evaluation of four surgical scenarios of lumbar fusion with hyperlordotic interbody cage: A finite element study. Zhang Z; Fogel GR; Liao Z; Sun Y; Sun X; Liu W Biomed Mater Eng; 2018; 29(4):485-497. PubMed ID: 30282345 [TBL] [Abstract][Full Text] [Related]
19. Biomechanics of an integrated interbody device versus ACDF anterior locking plate in a single-level cervical spine fusion construct. Stein MI; Nayak AN; Gaskins RB; Cabezas AF; Santoni BG; Castellvi AE Spine J; 2014 Jan; 14(1):128-36. PubMed ID: 24231054 [TBL] [Abstract][Full Text] [Related]