These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33903256)

  • 1. Warm early Mars surface enabled by high-altitude water ice clouds.
    Kite ES; Steele LJ; Mischna MA; Richardson MI
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33903256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mars Perihelion Cloud Trails as revealed by MARCI: Mesoscale Topographically Focussed Updrafts and Gravity Wave Forcing of High Altitude Clouds.
    Clancy RT; Wolff MJ; Heavens NG; James PB; Lee SW; Sandor BJ; Cantor BA; Malin MC; Tyler D; Spiga A
    Icarus; 2021 Jul; 362():. PubMed ID: 33867569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Habitability of waterworlds: runaway greenhouses, atmospheric expansion, and multiple climate states of pure water atmospheres.
    Goldblatt C
    Astrobiology; 2015 May; 15(5):362-70. PubMed ID: 25984919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f.
    Shields AL; Barnes R; Agol E; Charnay B; Bitz C; Meadows VS
    Astrobiology; 2016 Jun; 16(6):443-64. PubMed ID: 27176715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local time variation of water ice clouds on Mars as observed by THEMIS.
    Smith MD
    Icarus; 2019 Nov; 333():273-282. PubMed ID: 31708590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.
    Cronin TW; Tziperman E
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11490-5. PubMed ID: 26324919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paleolakes on Mars.
    Wharton RA; Crosby JM; McKay CP; Rice JW
    J Paleolimnol; 1995; 13():267-83. PubMed ID: 11539841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Could Cirrus Clouds Have Warmed Early Mars?
    Ramirez RM; Kasting JF
    Icarus; 2017 Jan; 281():248-261. PubMed ID: 30774148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mars water-ice clouds and precipitation.
    Whiteway JA; Komguem L; Dickinson C; Cook C; Illnicki M; Seabrook J; Popovici V; Duck TJ; Davy R; Taylor PA; Pathak J; Fisher D; Carswell AI; Daly M; Hipkin V; Zent AP; Hecht MH; Wood SE; Tamppari LK; Renno N; Moores JE; Lemmon MT; Daerden F; Smith PH
    Science; 2009 Jul; 325(5936):68-70. PubMed ID: 19574386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Warming early Mars with carbon dioxide clouds that scatter infrared radiation.
    Forget F; Pierrehumbert RT
    Science; 1997 Nov; 278(5341):1273-6. PubMed ID: 9360920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds.
    Caldeira K; Kasting JF
    Nature; 1992 Sep; 359():226-8. PubMed ID: 11540934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of carbon dioxide clouds on early martian climate.
    Mischna MA; Kasting JF; Pavlov A; Freedman R
    Icarus; 2000 Jun; 145(2):546-54. PubMed ID: 11543507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased insolation threshold for runaway greenhouse processes on Earth-like planets.
    Leconte J; Forget F; Charnay B; Wordsworth R; Pottier A
    Nature; 2013 Dec; 504(7479):268-71. PubMed ID: 24336285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early Mars: how warm and how wet?
    Squyres SW; Kasting JF
    Science; 1994 Aug; 265():744-9. PubMed ID: 11539185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerosols enhance cloud lifetime and brightness along the stratus-to-cumulus transition.
    Christensen MW; Jones WK; Stier P
    Proc Natl Acad Sci U S A; 2020 Jul; 117(30):17591-17598. PubMed ID: 32661149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Day-night cloud asymmetry prevents early oceans on Venus but not on Earth.
    Turbet M; Bolmont E; Chaverot G; Ehrenreich D; Leconte J; Marcq E
    Nature; 2021 Oct; 598(7880):276-280. PubMed ID: 34645997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Groundwater production from geothermal heating on early Mars and implication for early martian habitability.
    Ojha L; Buffo J; Karunatillake S; Siegler M
    Sci Adv; 2020 Dec; 6(49):. PubMed ID: 33268366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 condensation and the climate of early Mars.
    Kasting JF
    Icarus; 1991; 94():1-13. PubMed ID: 11538088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.