BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 33903284)

  • 1. Bioactive Sphingolipids as Major Regulators of Coronary Artery Disease.
    Song JH; Kim GT; Park KH; Park WJ; Park TS
    Biomol Ther (Seoul); 2021 Jul; 29(4):373-383. PubMed ID: 33903284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingolipids and Atherosclerosis: The Dual Role of Ceramide and Sphingosine-1-Phosphate.
    Piccoli M; Cirillo F; Ghiroldi A; Rota P; Coviello S; Tarantino A; La Rocca P; Lavota I; Creo P; Signorelli P; Pappone C; Anastasia L
    Antioxidants (Basel); 2023 Jan; 12(1):. PubMed ID: 36671005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingolipids in Atherosclerosis: Chimeras in Structure and Function.
    Peters L; Kuebler WM; Simmons S
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of Endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway.
    Wang H; Huang H; Ding SF
    Cell Biol Int; 2018 Nov; 42(11):1492-1502. PubMed ID: 29790626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Sphingolipid Mediators on the Determination of Cochlear Survival in Ototoxicity.
    Tabuchi K; Hara A
    Curr Mol Pharmacol; 2018; 11(4):279-284. PubMed ID: 29766830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingolipids in Lung Pathology in the Coronavirus Disease Era: A Review of Sphingolipid Involvement in the Pathogenesis of Lung Damage.
    Khan SA; Goliwas KF; Deshane JS
    Front Physiol; 2021; 12():760638. PubMed ID: 34690821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feeding Stimulates Sphingosine-1-Phosphate Mobilization in Mouse Hypothalamus.
    Vozella V; Realini N; Misto A; Piomelli D
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31426457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevating Endogenous Sphingosine-1-Phosphate (S1P) Levels Improves Endothelial Function and Ameliorates Atherosclerosis in Low Density Lipoprotein Receptor-Deficient (LDL-R-/-) Mice.
    Feuerborn R; Besser M; Potì F; Burkhardt R; Weißen-Plenz G; Ceglarek U; Simoni M; Proia RL; Freise H; Nofer JR
    Thromb Haemost; 2018 Aug; 118(8):1470-1480. PubMed ID: 30060257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis.
    Le Stunff H; Galve-Roperh I; Peterson C; Milstien S; Spiegel S
    J Cell Biol; 2002 Sep; 158(6):1039-49. PubMed ID: 12235122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingolipids and Kidney Disease: Possible Role of Preeclampsia and Intrauterine Growth Restriction (IUGR).
    Yokota R; Bhunu B; Toba H; Intapad S
    Kidney360; 2021 Mar; 2(3):534-541. PubMed ID: 35369015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia.
    Melland-Smith M; Ermini L; Chauvin S; Craig-Barnes H; Tagliaferro A; Todros T; Post M; Caniggia I
    Autophagy; 2015 Apr; 11(4):653-69. PubMed ID: 25853898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate.
    Laviad EL; Albee L; Pankova-Kholmyansky I; Epstein S; Park H; Merrill AH; Futerman AH
    J Biol Chem; 2008 Feb; 283(9):5677-84. PubMed ID: 18165233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of bioactive sphingolipids in physiology and pathology.
    Gomez-Larrauri A; Presa N; Dominguez-Herrera A; Ouro A; Trueba M; Gomez-Muñoz A
    Essays Biochem; 2020 Sep; 64(3):579-589. PubMed ID: 32579188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingolipids Contribute to Human Atherosclerotic Plaque Inflammation.
    Edsfeldt A; Dunér P; Ståhlman M; Mollet IG; Asciutto G; Grufman H; Nitulescu M; Persson AF; Fisher RM; Melander O; Orho-Melander M; Borén J; Nilsson J; Gonçalves I
    Arterioscler Thromb Vasc Biol; 2016 Jun; 36(6):1132-40. PubMed ID: 27055903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of sphingosine-1-phosphate in skeletal muscle: Physiology, mechanisms, and clinical perspectives.
    Cordeiro AV; Silva VRR; Pauli JR; da Silva ASR; Cintra DE; Moura LP; Ropelle ER
    J Cell Physiol; 2019 Jul; 234(7):10047-10059. PubMed ID: 30523638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingosine 1-Phosphate Receptors: Do They Have a Therapeutic Potential in Cardiac Fibrosis?
    Vestri A; Pierucci F; Frati A; Monaco L; Meacci E
    Front Pharmacol; 2017; 8():296. PubMed ID: 28626422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De Novo Sphingolipid Biosynthesis in Atherosclerosis.
    Park TS; Devi S; Sharma A; Kim GT; Cho KH
    Adv Exp Med Biol; 2022; 1372():31-46. PubMed ID: 35503172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of ceramide de novo synthesis in solid tissues changes sphingolipid levels in rat plasma, erythrocytes and platelets.
    Błachnio-Zabielska A; Baranowski M; Wójcik B; Górski J
    Adv Med Sci; 2016 Mar; 61(1):72-7. PubMed ID: 26521206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of sphingosine kinase localization in sphingolipid signaling.
    Wattenberg BW
    World J Biol Chem; 2010 Dec; 1(12):362-8. PubMed ID: 21537471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential therapeutic targets for atherosclerosis in sphingolipid metabolism.
    Yu Z; Peng Q; Huang Y
    Clin Sci (Lond); 2019 Mar; 133(6):763-776. PubMed ID: 30890654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.