These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33903606)

  • 1. Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks.
    Krishnapriyan AS; Montoya J; Haranczyk M; Hummelshøj J; Morozov D
    Sci Rep; 2021 Apr; 11(1):8888. PubMed ID: 33903606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Dimensional Energy Histograms as Features for Machine Learning to Predict Adsorption in Diverse Nanoporous Materials.
    Shi K; Li Z; Anstine DM; Tang D; Colina CM; Sholl DS; Siepmann JI; Snurr RQ
    J Chem Theory Comput; 2023 Jul; 19(14):4568-4583. PubMed ID: 36735251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Affinity Through Homology (PATH): Interpretable Binding Affinity Prediction with Persistent Homology.
    Long Y; Donald BR
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric landscapes for material discovery within energy-structure-function maps.
    Moosavi SM; Xu H; Chen L; Cooper AI; Smit B
    Chem Sci; 2020 Apr; 11(21):5423-5433. PubMed ID: 34094069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.
    Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Ensemble Structure and Physicochemical (SPOC) Descriptor for Machine-Learning Prediction of Chemical Reaction and Molecular Properties.
    Yang Q; Liu Y; Cheng J; Li Y; Liu S; Duan Y; Zhang L; Luo S
    Chemphyschem; 2022 Jul; 23(14):e202200255. PubMed ID: 35478429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Enabled Tailor-Made Design of Application-Specific Metal-Organic Frameworks.
    Zhang X; Zhang K; Lee Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):734-743. PubMed ID: 31820913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs).
    Pardakhti M; Moharreri E; Wanik D; Suib SL; Srivastava R
    ACS Comb Sci; 2017 Oct; 19(10):640-645. PubMed ID: 28800219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the Porous and Chemical Structure-Function Relationships of Trace CH
    Wu X; Che Y; Chen L; Amigues EJ; Wang R; He J; Dong H; Ding L
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47209-47221. PubMed ID: 36197758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes.
    Zhang X; Cui J; Zhang K; Wu J; Lee Y
    J Chem Inf Model; 2019 Nov; 59(11):4636-4644. PubMed ID: 31661958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering melting temperature prediction models of inorganic solids by combining supervised and unsupervised learning.
    Gharakhanyan V; Wirth LJ; Garrido Torres JA; Eisenberg E; Wang T; Trinkle DR; Chatterjee S; Urban A
    J Chem Phys; 2024 May; 160(20):. PubMed ID: 38804486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating Discovery of Metal-Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning.
    Wang R; Zhong Y; Bi L; Yang M; Xu D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52797-52807. PubMed ID: 33175490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph attention neural networks for mapping materials and molecules beyond short-range interatomic correlations.
    Liu Y; Liu X; Cao B
    J Phys Condens Matter; 2024 Feb; 36(21):. PubMed ID: 38306704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design.
    Janet JP; Duan C; Nandy A; Liu F; Kulik HJ
    Acc Chem Res; 2021 Feb; 54(3):532-545. PubMed ID: 33480674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised word embeddings capture latent knowledge from materials science literature.
    Tshitoyan V; Dagdelen J; Weston L; Dunn A; Rong Z; Kononova O; Persson KA; Ceder G; Jain A
    Nature; 2019 Jul; 571(7763):95-98. PubMed ID: 31270483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Screening of Metal-Organic Frameworks for Propane/Propylene Separation by Synergizing Molecular Simulation and Machine Learning.
    Tang H; Xu Q; Wang M; Jiang J
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53454-53467. PubMed ID: 34665615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological representations of crystalline compounds for the machine-learning prediction of materials properties.
    Jiang Y; Chen D; Chen X; Li T; Wei GW; Pan F
    NPJ Comput Mater; 2021; 7():. PubMed ID: 34676106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recurrent neural networks with specialized word embeddings for health-domain named-entity recognition.
    Jauregi Unanue I; Zare Borzeshi E; Piccardi M
    J Biomed Inform; 2017 Dec; 76():102-109. PubMed ID: 29146561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.