These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 33903649)
1. Numerical approach towards gyrotactic microorganisms hybrid nanoliquid flow with the hall current and magnetic field over a spinning disk. Lv YP; Algehyne EA; Alshehri MG; Alzahrani E; Bilal M; Khan MA; Shuaib M Sci Rep; 2021 Apr; 11(1):8948. PubMed ID: 33903649 [TBL] [Abstract][Full Text] [Related]
2. Motile microorganisms hybrid nanoliquid flow with the influence of activation energy and heat source over a rotating disc. Ali U; Khan H; Bilal M; Usman M; Shuaib M; Gul T Nanotechnology; 2023 Aug; 34(42):. PubMed ID: 37473745 [TBL] [Abstract][Full Text] [Related]
3. Numerical analysis of thermal conductive hybrid nanofluid flow over the surface of a wavy spinning disk. Ahmadian A; Bilal M; Khan MA; Asjad MI Sci Rep; 2020 Nov; 10(1):18776. PubMed ID: 33139760 [TBL] [Abstract][Full Text] [Related]
4. Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect. Khan MS; Mei S; Shabnam ; Ali Shah N; Chung JD; Khan A; Shah SA Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214989 [TBL] [Abstract][Full Text] [Related]
5. Numerical Analysis of Unsteady Hybrid Nanofluid Flow Comprising CNTs-Ferrousoxide/Water with Variable Magnetic Field. Khan MS; Mei S; Shabnam ; Fernandez-Gamiz U; Noeiaghdam S; Shah SA; Khan A Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055199 [TBL] [Abstract][Full Text] [Related]
6. Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach. Algehyne EA; Saeed A; Arif M; Bilal M; Kumam P; Galal AM Sci Rep; 2023 Aug; 13(1):13675. PubMed ID: 37608049 [TBL] [Abstract][Full Text] [Related]
7. Recent progress in melting heat phenomenon for bioconvection transport of nanofluid through a lubricated surface with swimming microorganisms. Alqarni MS; Yasmin S; Waqas H; Khan SA Sci Rep; 2022 May; 12(1):8447. PubMed ID: 35589791 [TBL] [Abstract][Full Text] [Related]
8. Numerical Analysis of Thermal Radiative Maxwell Nanofluid Flow Over-Stretching Porous Rotating Disk. Zhou SS; Bilal M; Khan MA; Muhammad T Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34068521 [TBL] [Abstract][Full Text] [Related]
9. Thermal Transmission Comparison of Nanofluids over Stretching Surface under the Influence of Magnetic Field. Arshad M; Karamti H; Awrejcewicz J; Grzelczyk D; Galal AM Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014219 [TBL] [Abstract][Full Text] [Related]
10. Thermal performance of Joule heating in radiative Eyring-Powell nanofluid with Arrhenius activation energy and gyrotactic motile microorganisms. Ali U; Irfan M Heliyon; 2024 Feb; 10(3):e25070. PubMed ID: 38317970 [TBL] [Abstract][Full Text] [Related]
11. Analysis of Soret and Dufour effects on radiative heat transfer in hybrid bioconvective flow of carbon nanotubes. Hussain A; Raiz S; Hassan A; Hassan AM; Karamti H; Bognár G Sci Rep; 2024 May; 14(1):11970. PubMed ID: 38796613 [TBL] [Abstract][Full Text] [Related]
12. Gyrotactic micro-organism flow of Maxwell nanofluid between two parallel plates. Xu YJ; Bilal M; Al-Mdallal Q; Khan MA; Muhammad T Sci Rep; 2021 Jul; 11(1):15142. PubMed ID: 34312440 [TBL] [Abstract][Full Text] [Related]
13. Numerical simulation of the nanofluid flow consists of gyrotactic microorganism and subject to activation energy across an inclined stretching cylinder. A Othman H; Ali B; Jubair S; Yahya Almusawa M; M Aldin S Sci Rep; 2023 May; 13(1):7719. PubMed ID: 37173459 [TBL] [Abstract][Full Text] [Related]
14. The parametric study of hybrid nanofluid flow with heat transition characteristics over a fluctuating spinning disk. Zhang XH; A Algehyne E; G Alshehri M; Bilal M; Khan MA; Muhammad T PLoS One; 2021; 16(8):e0254457. PubMed ID: 34398887 [TBL] [Abstract][Full Text] [Related]
15. Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk. Gul T; Kashifullah ; Bilal M; Alghamdi W; Asjad MI; Abdeljawad T Sci Rep; 2021 Jan; 11(1):1180. PubMed ID: 33441841 [TBL] [Abstract][Full Text] [Related]
16. Significance of Hall current and viscous dissipation in the bioconvection flow of couple-stress nanofluid with generalized Fourier and Fick laws. Ramzan M; Javed M; Rehman S; Saeed A; Gul T; Kumam P; Suttiarporn P Sci Rep; 2022 Dec; 12(1):21812. PubMed ID: 36528650 [TBL] [Abstract][Full Text] [Related]
17. Melting heat transfer analysis in magnetized bioconvection flow of sutterby nanoliquid conveying gyrotactic microorganisms. Anjum N; Azeem Khan W; Ali M; Muhammad T; Hussain Z Heliyon; 2023 Nov; 9(11):e21910. PubMed ID: 38045202 [TBL] [Abstract][Full Text] [Related]
18. Numerical Analysis of an Unsteady, Electroviscous, Ternary Hybrid Nanofluid Flow with Chemical Reaction and Activation Energy across Parallel Plates. Bilal M; Ahmed AE; El-Nabulsi RA; Ahammad NA; Alharbi KAM; Elkotb MA; Anukool W; S A ZA Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744488 [TBL] [Abstract][Full Text] [Related]
19. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk. Hafeez A; Khan M; Ahmed J Comput Methods Programs Biomed; 2020 Jul; 191():105342. PubMed ID: 32113101 [TBL] [Abstract][Full Text] [Related]
20. Magneto-bioconvection flow of Casson nanofluid configured by a rotating disk in the presence of gyrotatic microorganisms and Joule heating. Ahmed J; Nazir F; Fadhl BM; Makhdoum BM; Mahmoud Z; Mohamed A; Khan I Heliyon; 2023 Aug; 9(8):e18028. PubMed ID: 37664738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]