These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33903757)

  • 1. Creating custom synthetic genomes in Escherichia coli with REXER and GENESIS.
    Robertson WE; Funke LFH; de la Torre D; Fredens J; Wang K; Chin JW
    Nat Protoc; 2021 May; 16(5):2345-2380. PubMed ID: 33903757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases.
    Krishnakumar R; Grose C; Haft DH; Zaveri J; Alperovich N; Gibson DG; Merryman C; Glass JI
    Nucleic Acids Res; 2014 Aug; 42(14):e111. PubMed ID: 24914053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining synonymous codon compression schemes by genome recoding.
    Wang K; Fredens J; Brunner SF; Kim SH; Chia T; Chin JW
    Nature; 2016 Nov; 539(7627):59-64. PubMed ID: 27776354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed chromosome fission and fusion enable precise large-scale genome rearrangement and assembly.
    Wang K; de la Torre D; Robertson WE; Chin JW
    Science; 2019 Aug; 365(6456):922-926. PubMed ID: 31467221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.
    Ryu YS; Biswas RK; Shin K; Parisutham V; Kim SM; Lee SK
    PLoS One; 2014; 9(4):e94266. PubMed ID: 24747264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A double-locus scarless genome editing system in Escherichia coli.
    Liu H; Hou G; Wang P; Guo G; Wang Y; Yang N; Rehman MNU; Li C; Li Q; Zheng J; Zeng J; Li S
    Biotechnol Lett; 2020 Aug; 42(8):1457-1465. PubMed ID: 32130564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly.
    Zürcher JF; Kleefeldt AA; Funke LFH; Birnbaum J; Fredens J; Grazioli S; Liu KC; Spinck M; Petris G; Murat P; Rehm FBH; Sale JE; Chin JW
    Nature; 2023 Jul; 619(7970):555-562. PubMed ID: 37380776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli.
    Reisch CR; Prather KL
    Sci Rep; 2015 Oct; 5():15096. PubMed ID: 26463009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and efficient construction of markerless deletions in the Escherichia coli genome.
    Yu BJ; Kang KH; Lee JH; Sung BH; Kim MS; Kim SC
    Nucleic Acids Res; 2008 Aug; 36(14):e84. PubMed ID: 18567910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merlin: Computer-Aided Oligonucleotide Design for Large Scale Genome Engineering with MAGE.
    Quintin M; Ma NJ; Ahmed S; Bhatia S; Lewis A; Isaacs FJ; Densmore D
    ACS Synth Biol; 2016 Jun; 5(6):452-8. PubMed ID: 27054880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA.
    Gallagher RR; Li Z; Lewis AO; Isaacs FJ
    Nat Protoc; 2014 Oct; 9(10):2301-16. PubMed ID: 25188632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scarless engineering of the Escherichia coli genome.
    Fehér T; Karcagi I; Gyorfy Z; Umenhoffer K; Csörgo B; Pósfai G
    Methods Mol Biol; 2008; 416():251-9. PubMed ID: 18392972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High molecular weight DNA assembly in vivo for synthetic biology applications.
    Juhas M; Ajioka JW
    Crit Rev Biotechnol; 2017 May; 37(3):277-286. PubMed ID: 26863154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refined method for the genomic integration of complex synthetic circuits.
    Ying BW; Ito Y; Shimizu Y; Yomo T
    J Biosci Bioeng; 2010 Nov; 110(5):529-36. PubMed ID: 20646959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology-dependent recombination of large synthetic pathways into E. coli genome via λ-Red and CRISPR/Cas9 dependent selection methodology.
    Su B; Song D; Zhu H
    Microb Cell Fact; 2020 May; 19(1):108. PubMed ID: 32448328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rewriting the blueprint of life by synthetic genomics and genome engineering.
    Annaluru N; Ramalingam S; Chandrasegaran S
    Genome Biol; 2015 Jun; 16(1):125. PubMed ID: 26076868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA.
    Lau YH; Stirling F; Kuo J; Karrenbelt MAP; Chan YA; Riesselman A; Horton CA; Schäfer E; Lips D; Weinstock MT; Gibson DG; Way JC; Silver PA
    Nucleic Acids Res; 2017 Jun; 45(11):6971-6980. PubMed ID: 28499033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplex Genome Editing in Escherichia coli.
    Jensen SI; Nielsen AT
    Methods Mol Biol; 2018; 1671():119-129. PubMed ID: 29170956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excision of selectable markers from the Escherichia coli genome without counterselection using an optimized λRed recombineering procedure.
    Bubnov DM; Yuzbashev TV; Vybornaya TV; Netrusov AI; Sineoky SP
    J Microbiol Methods; 2019 Mar; 158():86-92. PubMed ID: 30738107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.