These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33903873)

  • 1. Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach.
    Ahmed H; Stokke BT
    Lab Chip; 2021 Jun; 21(11):2232-2243. PubMed ID: 33903873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic dual picoinjection based encapsulation of hemoglobin in alginate microcapsules reinforced by a poly(L-lysine)-
    Ahmed H; Khan EA; Stokke BT
    Soft Matter; 2022 Dec; 19(1):69-79. PubMed ID: 36468540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent.
    Sugaya S; Yamada M; Hori A; Seki M
    Biomicrofluidics; 2013; 7(5):54120. PubMed ID: 24396529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip preparation of calcium alginate particles based on droplet templates formed by using a centrifugal microfluidic technique.
    Liu M; Sun XT; Yang CG; Xu ZR
    J Colloid Interface Sci; 2016 Mar; 466():20-7. PubMed ID: 26704472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator.
    Lian M; Collier CP; Doktycz MJ; Retterer ST
    Biomicrofluidics; 2012; 6(4):44108. PubMed ID: 24198865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass Production of Cell-Laden Calcium Alginate Particles with Centrifugal Force.
    Morimoto Y; Onuki M; Takeuchi S
    Adv Healthc Mater; 2017 Jul; 6(13):. PubMed ID: 28426183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet-Based Microfluidic Preparation of Shape-Variable Alginate Hydrogel Magnetic Micromotors.
    Zhang C; Wang Y; Chen Y; Ma X; Chen W
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic fabrication of shape-tunable alginate microgels: effect of size and impact velocity.
    Hu Y; Azadi G; Ardekani AM
    Carbohydr Polym; 2015 Apr; 120():38-45. PubMed ID: 25662685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and characterization of monodisperse deformable alginate and pNIPAM microparticles with a wide range of shear moduli.
    Hwang MY; Kim SG; Lee HS; Muller SJ
    Soft Matter; 2017 Aug; 13(34):5785-5794. PubMed ID: 28766673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach to producing uniform 3-D tumor spheroid constructs using ultrasound treatment.
    Karamikamkar S; Behzadfar E; Cheung KC
    Biomed Microdevices; 2018 Mar; 20(2):27. PubMed ID: 29511829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation.
    Huang KS; Lai TH; Lin YC
    Front Biosci; 2007 May; 12():3061-7. PubMed ID: 17485282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Sep; 10(17):2292-5. PubMed ID: 20625583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a microfluidic device for studying the in situ drug-loading/release behavior of graphene oxide-encapsulated hydrogel beads.
    Veerla SC; Kim DR; Yang SY
    Biomater Res; 2018; 22():7. PubMed ID: 29564150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic generation of monodispersed Janus alginate hydrogel microparticles using water-in-oil emulsion reactant.
    Liu Y; Nisisako T
    Biomicrofluidics; 2022 Mar; 16(2):024101. PubMed ID: 35282035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic On-Chip Production of Alginate Hydrogels Using Double Coflow Geometry.
    Sattari A; Janfaza S; Mashhadi Keshtiban M; Tasnim N; Hanafizadeh P; Hoorfar M
    ACS Omega; 2021 Oct; 6(40):25964-25971. PubMed ID: 34660958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Characterization of Hydrogel Droplets Containing Magnetic Nano Particles, in a Microfluidic Flow-Focusing Chip.
    Moharramzadeh F; Seyyed Ebrahimi SA; Zarghami V; Lalegani Z; Hamawandi B
    Gels; 2023 Jun; 9(6):. PubMed ID: 37367170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems.
    Ziemecka I; van Steijn V; Koper GJ; Rosso M; Brizard AM; van Esch JH; Kreutzer MT
    Lab Chip; 2011 Feb; 11(4):620-4. PubMed ID: 21125099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.