These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33903911)

  • 21. Asymmetric dynamic coupling promotes alternative evolutionary pathways in an enzyme dimer.
    Ambrus V; Hoffka G; Fuxreiter M
    Sci Rep; 2020 Nov; 10(1):18866. PubMed ID: 33139795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary aspects of enzyme dynamics.
    Klinman JP; Kohen A
    J Biol Chem; 2014 Oct; 289(44):30205-30212. PubMed ID: 25210031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects.
    Yang G; Hong N; Baier F; Jackson CJ; Tokuriki N
    Biochemistry; 2016 Aug; 55(32):4583-93. PubMed ID: 27444875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directed Evolution Mimics Allosteric Activation by Stepwise Tuning of the Conformational Ensemble.
    Buller AR; van Roye P; Cahn JKB; Scheele RA; Herger M; Arnold FH
    J Am Chem Soc; 2018 Jun; 140(23):7256-7266. PubMed ID: 29712420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein.
    Clifton BE; Kaczmarski JA; Carr PD; Gerth ML; Tokuriki N; Jackson CJ
    Nat Chem Biol; 2018 Jun; 14(6):542-547. PubMed ID: 29686357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mining electron density for functionally relevant protein polysterism in crystal structures.
    Fraser JS; Jackson CJ
    Cell Mol Life Sci; 2011 Jun; 68(11):1829-41. PubMed ID: 21190057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploiting enzyme evolution for computational protein design.
    Pinto GP; Corbella M; Demkiv AO; Kamerlin SCL
    Trends Biochem Sci; 2022 May; 47(5):375-389. PubMed ID: 34544655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein engineering: the potential of remote mutations.
    Wilding M; Hong N; Spence M; Buckle AM; Jackson CJ
    Biochem Soc Trans; 2019 Apr; 47(2):701-711. PubMed ID: 30902926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily.
    Baier F; Tokuriki N
    J Mol Biol; 2014 Jun; 426(13):2442-56. PubMed ID: 24769192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics and constraints of enzyme evolution.
    Kaltenbach M; Tokuriki N
    J Exp Zool B Mol Dev Evol; 2014 Nov; 322(7):468-87. PubMed ID: 24522979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational diversity and the emergence of sequence signatures during evolution.
    Parisi G; Zea DJ; Monzon AM; Marino-Buslje C
    Curr Opin Struct Biol; 2015 Jun; 32():58-65. PubMed ID: 25749052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of Conformational Dynamics in the Evolution of Retro-Aldolase Activity.
    Romero-Rivera A; Garcia-Borràs M; Osuna S
    ACS Catal; 2017 Dec; 7(12):8524-8532. PubMed ID: 29226011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational evolutionary design: the theory of in vitro protein evolution.
    Voigt CA; Kauffman S; Wang ZG
    Adv Protein Chem; 2000; 55():79-160. PubMed ID: 11050933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Negative Epistasis and Evolvability in TEM-1 β-Lactamase--The Thin Line between an Enzyme's Conformational Freedom and Disorder.
    Dellus-Gur E; Elias M; Caselli E; Prati F; Salverda ML; de Visser JA; Fraser JS; Tawfik DS
    J Mol Biol; 2015 Jul; 427(14):2396-409. PubMed ID: 26004540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of conformational dynamics determines the conversion of a promiscuous generalist into a specialist enzyme.
    Zou T; Risso VA; Gavira JA; Sanchez-Ruiz JM; Ozkan SB
    Mol Biol Evol; 2015 Jan; 32(1):132-43. PubMed ID: 25312912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dynamical nature of enzymatic catalysis.
    Callender R; Dyer RB
    Acc Chem Res; 2015 Feb; 48(2):407-13. PubMed ID: 25539144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the mutational interplay between primary and promiscuous protein functions: a computational-experimental approach.
    Garcia-Seisdedos H; Ibarra-Molero B; Sanchez-Ruiz JM
    PLoS Comput Biol; 2012; 8(6):e1002558. PubMed ID: 22719242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics.
    Acevedo-Rocha CG; Li A; D'Amore L; Hoebenreich S; Sanchis J; Lubrano P; Ferla MP; Garcia-Borràs M; Osuna S; Reetz MT
    Nat Commun; 2021 Mar; 12(1):1621. PubMed ID: 33712579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural heterogeneity and dynamics in protein evolution and design.
    Johansson KE; Lindorff-Larsen K
    Curr Opin Struct Biol; 2018 Feb; 48():157-163. PubMed ID: 29413956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.