These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33903936)

  • 1. Density functional theory study on the influence of tension and compression deformation on the electrical and phonon properties of monolayer and bilayer graphene.
    Wei L; Liu G; Qu Y; Zhang G
    J Mol Model; 2021 Apr; 27(5):138. PubMed ID: 33903936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure.
    Phuc HV; Hieu NN; Hoi BD; Nguyen CV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17899-17908. PubMed ID: 29926024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.
    Hu T; Han Y; Dong J
    Nanotechnology; 2014 Nov; 25(45):455703. PubMed ID: 25333269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene.
    Sun Z; Yuan K; Zhang X; Qin G; Gong X; Tang D
    Phys Chem Chem Phys; 2019 Jul; 21(28):15647-15655. PubMed ID: 31268444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon bandgap engineering of strained monolayer MoS₂.
    Jiang JW
    Nanoscale; 2014 Jul; 6(14):8326-33. PubMed ID: 24932612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes.
    Lu P; Wu X; Guo W; Zeng XC
    Phys Chem Chem Phys; 2012 Oct; 14(37):13035-40. PubMed ID: 22911017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A first principle study of the structural, electronic, and temperature-dependent thermodynamic properties of graphene/MoS
    Hossain MT; Rahman MA
    J Mol Model; 2020 Feb; 26(2):40. PubMed ID: 32008139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics.
    Woo J; Yun KH; Chung YC
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10477-82. PubMed ID: 27046262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surprisingly good thermoelectric performance of monolayer C
    Jiao WY; Hu R; Han SH; Luo YF; Yuan HM; Li MK; Liu HJ
    Nanotechnology; 2021 Nov; 33(4):. PubMed ID: 34653997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain effects in the electron orbital coupling and electric structure of graphene.
    Quan S; Zhang Y; Chen W
    Phys Chem Chem Phys; 2022 Oct; 24(38):23929-23935. PubMed ID: 36165846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opening an electrical band gap of bilayer graphene with molecular doping.
    Zhang W; Lin CT; Liu KK; Tite T; Su CY; Chang CH; Lee YH; Chu CW; Wei KH; Kuo JL; Li LJ
    ACS Nano; 2011 Sep; 5(9):7517-24. PubMed ID: 21819152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics.
    Kou L; Hu F; Yan B; Frauenheim T; Chen C
    Nanoscale; 2014 Jul; 6(13):7474-9. PubMed ID: 24881864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Study of the Transport Properties of Graphene-Hexagonal Boron Nitride Superlattice.
    Wang XM; Lu SS
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3025-8. PubMed ID: 26353530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear anisotropic deformation behavior of a graphene monolayer under uniaxial tension.
    Zhou L; Cao G
    Phys Chem Chem Phys; 2016 Jan; 18(3):1657-64. PubMed ID: 26672972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable electronic properties of the dynamically stable layered mineral Pt
    Bafekry A; Stampfl C; Nguyen C; Ghergherehchi M; Mortazavi B
    Phys Chem Chem Phys; 2020 Nov; 22(42):24471-24479. PubMed ID: 33089277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Structure and Band Gap Engineering of Two-Dimensional Octagon-Nitrogene.
    Lin W; Li J; Wang W; Liang SD; Yao DX
    Sci Rep; 2018 Jan; 8(1):1674. PubMed ID: 29374189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexatetra-Carbon: A Novel Two-Dimensional Semiconductor Allotrope of Carbon.
    Naseri M; Jalilian J; Salahub DR; Lourenço MP; Rezaei G
    Computation (Basel); 2022 Feb; 10(2):19. PubMed ID: 35910342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tweaking the Physics of Interfaces between Monolayers of Buckled Cadmium Sulfide for a Superhigh Piezoelectricity, Excitonic Solar Cell Efficiency, and Thermoelectricity.
    Mohanta MK; Sarkar A
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18123-18137. PubMed ID: 32223217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).
    Cong C; Yu T; Saito R; Dresselhaus GF; Dresselhaus MS
    ACS Nano; 2011 Mar; 5(3):1600-5. PubMed ID: 21344883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.