BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33904236)

  • 1. Enhancing anti-PD-1 Immunotherapy by Nanomicelles Self-Assembled from Multivalent Aptamer Drug Conjugates.
    Geng Z; Wang L; Liu K; Liu J; Tan W
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15459-15465. PubMed ID: 33904236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing Toxicity of Immune Therapy Using Aptamer-Targeted Drug Delivery.
    Gilboa E; Berezhnoy A; Schrand B
    Cancer Immunol Res; 2015 Nov; 3(11):1195-200. PubMed ID: 26541880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor-Targeted Nanomedicine for Immunotherapy.
    Cabral H; Kinoh H; Kataoka K
    Acc Chem Res; 2020 Dec; 53(12):2765-2776. PubMed ID: 33161717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aptamer-guided nanomedicines for anticancer drug delivery.
    Alshaer W; Hillaireau H; Fattal E
    Adv Drug Deliv Rev; 2018 Sep; 134():122-137. PubMed ID: 30267743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-PD-L1 DNA aptamer antagonizes the interaction of PD-1/PD-L1 with antitumor effect.
    Gao T; Mao Z; Li W; Pei R
    J Mater Chem B; 2021 Jan; 9(3):746-756. PubMed ID: 33319876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ethylene glycol) shell-sheddable TAT-modified core cross-linked nano-micelles: TAT-enhanced cellular uptake and lysosomal pH-triggered doxorubicin release.
    Zhang Y; Xiao Y; Huang Y; He Y; Xu Y; Lu W; Yu J
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110772. PubMed ID: 31999965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy.
    Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H
    Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer.
    Camorani S; Passariello M; Agnello L; Esposito S; Collina F; Cantile M; Di Bonito M; Ulasov IV; Fedele M; Zannetti A; De Lorenzo C; Cerchia L
    J Exp Clin Cancer Res; 2020 Sep; 39(1):180. PubMed ID: 32892748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aptamer-Gold Nanocage Composite for Photoactivated Immunotherapy.
    Song W; Hu JJ; Song SJ; Xu Y; Yang H; Yang F; Zhou Y; Yu T; Qiu WX
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):42931-42939. PubMed ID: 36099584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aptamer-based self-assembled nanomicelle enables efficient and targeted drug delivery.
    Chen G; Mao D; Wang X; Chen J; Gu C; Huang S; Yang Y; Zhang F; Tan W
    J Nanobiotechnology; 2023 Nov; 21(1):415. PubMed ID: 37946192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aptamer-PROTAC Conjugates (APCs) for Tumor-Specific Targeting in Breast Cancer.
    He S; Gao F; Ma J; Ma H; Dong G; Sheng C
    Angew Chem Int Ed Engl; 2021 Oct; 60(43):23299-23305. PubMed ID: 34240523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cas9-edited immune checkpoint blockade PD-1 DNA polyaptamer hydrogel for cancer immunotherapy.
    Lee J; Le QV; Yang G; Oh YK
    Biomaterials; 2019 Oct; 218():119359. PubMed ID: 31349094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective antitumor activity of drug-free TPGS nanomicelles with ROS-induced mitochondrial cell death.
    Fan Z; Jiang B; Shi D; Yang L; Yin W; Zheng K; Zhang X; Xin C; Su G; Hou Z
    Int J Pharm; 2021 Feb; 594():120184. PubMed ID: 33340597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PD-1 Blockade for Improving the Antitumor Efficiency of Polymer-Doxorubicin Nanoprodrug.
    Gao F; Zhang C; Qiu WX; Dong X; Zheng DW; Wu W; Zhang XZ
    Small; 2018 Sep; 14(37):e1802403. PubMed ID: 30129176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aptamer-based targeted therapy.
    Zhu G; Chen X
    Adv Drug Deliv Rev; 2018 Sep; 134():65-78. PubMed ID: 30125604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional aptamer-silver conjugates as theragnostic agents for specific cancer cell therapy and fluorescence-enhanced cell imaging.
    Li H; Hu H; Zhao Y; Chen X; Li W; Qiang W; Xu D
    Anal Chem; 2015 Apr; 87(7):3736-45. PubMed ID: 25686206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of Cancer Cell-Specific Aptamers in Targeted Delivery of Anticancer Therapeutic Agents.
    Kim M; Kim DM; Kim KS; Jung W; Kim DE
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29617327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer-Functionalized and Backbone Redox-Responsive Hyperbranched Polymer for Targeted Drug Delivery in Cancer Therapy.
    Zhuang Y; Deng H; Su Y; He L; Wang R; Tong G; He D; Zhu X
    Biomacromolecules; 2016 Jun; 17(6):2050-62. PubMed ID: 27113017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A TIM-3 Oligonucleotide Aptamer Enhances T Cell Functions and Potentiates Tumor Immunity in Mice.
    Gefen T; Castro I; Muharemagic D; Puplampu-Dove Y; Patel S; Gilboa E
    Mol Ther; 2017 Oct; 25(10):2280-2288. PubMed ID: 28800954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.