These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 33904298)
1. Double Perovskite Cobaltites Integrated in a Monolithic and Noble Metal-Free Photoelectrochemical Device for Efficient Water Splitting. Zhu J; Guđmundsdóttir JB; Strandbakke R; Both KG; Aarholt T; Carvalho PA; Sørby MH; Jensen IJT; Guzik MN; Norby T; Haug H; Chatzitakis A ACS Appl Mater Interfaces; 2021 May; 13(17):20313-20325. PubMed ID: 33904298 [TBL] [Abstract][Full Text] [Related]
2. Iron and Nickel Substituted Perovskite Cobaltites for Sustainable Oxygen Evolving Anodes in Alkaline Environment. Petlund H; Faid A; Zhu J; Pokle A; Norby T; Sunde S; Chatzitakis A ChemSusChem; 2024 Sep; ():e202401403. PubMed ID: 39297279 [TBL] [Abstract][Full Text] [Related]
3. Solar Water Splitting Using Earth-Abundant Electrocatalysts Driven by High-Efficiency Perovskite Solar Cells. Asiri AM; Ren D; Zhang H; Bahadar Khan S; Alamry KA; Marwani HM; Sherjeel Javed Khan M; Adeosun WA; Zakeeruddin SM; Grätzel M ChemSusChem; 2022 Feb; 15(4):e202102471. PubMed ID: 34962096 [TBL] [Abstract][Full Text] [Related]
4. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Luo J; Im JH; Mayer MT; Schreier M; Nazeeruddin MK; Park NG; Tilley SD; Fan HJ; Grätzel M Science; 2014 Sep; 345(6204):1593-6. PubMed ID: 25258076 [TBL] [Abstract][Full Text] [Related]
5. An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting. Morales-Guio CG; Mayer MT; Yella A; Tilley SD; Grätzel M; Hu X J Am Chem Soc; 2015 Aug; 137(31):9927-36. PubMed ID: 26200221 [TBL] [Abstract][Full Text] [Related]
6. Water Splitting Exceeding 17% Solar-to-Hydrogen Conversion Efficiency Using Solution-Processed Ni-Based Electrocatalysts and Perovskite/Si Tandem Solar Cell. Park H; Park IJ; Lee MG; Kwon KC; Hong SP; Kim DH; Lee SA; Lee TH; Kim C; Moon CW; Son DY; Jung GH; Yang HS; Lee JR; Lee J; Park NG; Kim SY; Kim JY; Jang HW ACS Appl Mater Interfaces; 2019 Sep; 11(37):33835-33843. PubMed ID: 31436403 [TBL] [Abstract][Full Text] [Related]
7. Earth-Abundant Transition-Metal-Based Electrocatalysts for Water Electrolysis to Produce Renewable Hydrogen. Li A; Sun Y; Yao T; Han H Chemistry; 2018 Dec; 24(69):18334-18355. PubMed ID: 30198114 [TBL] [Abstract][Full Text] [Related]
8. Monolithic FAPbBr Yang H; Liu Y; Ding Y; Li F; Wang L; Cai B; Zhang F; Liu T; Boschloo G; Johansson EMJ; Sun L Nat Commun; 2023 Sep; 14(1):5486. PubMed ID: 37679329 [TBL] [Abstract][Full Text] [Related]
9. NiMoV and NiO-based catalysts for efficient solar-driven water splitting using thermally integrated photovoltaics in a scalable approach. Pehlivan İB; Oscarsson J; Qiu Z; Stolt L; Edoff M; Edvinsson T iScience; 2021 Jan; 24(1):101910. PubMed ID: 33376975 [TBL] [Abstract][Full Text] [Related]
10. Noble metal-free hydrogen evolution catalysts for water splitting. Zou X; Zhang Y Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650 [TBL] [Abstract][Full Text] [Related]
11. Hybrid Perovskite-Based Wireless Integrated Device Exceeding a Solar to Hydrogen Conversion Efficiency of 11. Park J; Lee J; Lee H; Im H; Moon S; Jeong CS; Yang W; Moon J Small; 2023 Jul; 19(27):e2300174. PubMed ID: 36965011 [TBL] [Abstract][Full Text] [Related]
12. Transition metals-based electrocatalysts on super-flat substrate for perovskite photovoltaic hydrogen production with 13.75% solar to hydrogen efficiency. Li Y; Ma Z; Hou S; Li X; Wang S; Du Z; Chen Y; Zhang Q; Li Y; Yang Q; Huang Z; Bai L; Yu H; Liu Q; Xiang Y; Zhang M; Yu J; Xie J; Zhou Y; Tang C; Sun K; Ding L J Colloid Interface Sci; 2025 Jan; 677(Pt A):599-609. PubMed ID: 39111094 [TBL] [Abstract][Full Text] [Related]
13. NiMoFe and NiMoFeP as Complementary Electrocatalysts for Efficient Overall Water Splitting and Their Application in PV-Electrolysis with STH 12.3. Baek M; Kim GW; Park T; Yong K Small; 2019 Dec; 15(49):e1905501. PubMed ID: 31682059 [TBL] [Abstract][Full Text] [Related]
14. Green Hydrogen Production by Low-Temperature Membrane-Engineered Water Electrolyzers, and Regenerative Fuel Cells. Bodard A; Chen Z; ELJarray O; Zhang G Small Methods; 2024 Sep; ():e2400574. PubMed ID: 39285832 [TBL] [Abstract][Full Text] [Related]
15. Photoelectrochemical devices for solar water splitting - materials and challenges. Jiang C; Moniz SJA; Wang A; Zhang T; Tang J Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493 [TBL] [Abstract][Full Text] [Related]
16. Perovskite Photovoltaic Integrated CdS/TiO Karuturi SK; Shen H; Duong T; Narangari PR; Yew R; Wong-Leung J; Catchpole K; Tan HH; Jagadish C ACS Appl Mater Interfaces; 2018 Jul; 10(28):23766-23773. PubMed ID: 29939003 [TBL] [Abstract][Full Text] [Related]
17. Large-Scale, Low-Cost, and High-Efficiency Water-Splitting System for Clean H Peng Y; Jiang K; Hill W; Lu Z; Yao H; Wang H ACS Appl Mater Interfaces; 2019 Jan; 11(4):3971-3977. PubMed ID: 30604959 [TBL] [Abstract][Full Text] [Related]
18. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. Morales-Guio CG; Liardet L; Mayer MT; Tilley SD; Grätzel M; Hu X Angew Chem Int Ed Engl; 2015 Jan; 54(2):664-7. PubMed ID: 25403656 [TBL] [Abstract][Full Text] [Related]
19. An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency. Hsu SH; Miao J; Zhang L; Gao J; Wang H; Tao H; Hung SF; Vasileff A; Qiao SZ; Liu B Adv Mater; 2018 May; 30(18):e1707261. PubMed ID: 29569283 [TBL] [Abstract][Full Text] [Related]
20. Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting. Yang HB; Miao J; Hung SF; Huo F; Chen HM; Liu B ACS Nano; 2014 Oct; 8(10):10403-13. PubMed ID: 25268880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]