These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 3390431)
1. Studies of electron-transfer properties of salicylate hydroxylase from Pseudomonas cepacia and effects of salicylate and benzoate binding. Einarsdottir GH; Stankovich MT; Tu SC Biochemistry; 1988 May; 27(9):3277-85. PubMed ID: 3390431 [TBL] [Abstract][Full Text] [Related]
2. Regulation of oxidation-reduction potentials of anthranilate hydroxylase from Trichosporon cutaneum by substrate and effector binding. Einarsdottir GH; Stankovich MT; Powlowski J; Ballou DP; Massey V Biochemistry; 1989 May; 28(10):4161-8. PubMed ID: 2765477 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamic control of D-amino acid oxidase by benzoate binding. Van den Berghe-Snorek S; Stankovich MT J Biol Chem; 1985 Mar; 260(6):3373-9. PubMed ID: 2857720 [TBL] [Abstract][Full Text] [Related]
5. The kinetic mechanism of salicylate hydroxylase as studied by initial rate measurement, rapid reaction kinetics, and isotope effects. Wang LH; Tu SC J Biol Chem; 1984 Sep; 259(17):10682-8. PubMed ID: 6381488 [TBL] [Abstract][Full Text] [Related]
6. Redox potentials of the flavoprotein lactate oxidase. Stankovich M; Fox B Biochemistry; 1983 Sep; 22(19):4466-72. PubMed ID: 6626511 [TBL] [Abstract][Full Text] [Related]
7. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Sevrioukova I; Shaffer C; Ballou DP; Peterson JA Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531 [TBL] [Abstract][Full Text] [Related]
8. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
9. Redox potentials and their pH dependence of D-amino-acid oxidase of Rhodotorula gracilis and Trigonopsis variabilis. Pollegioni L; Porrini D; Molla G; Pilone MS Eur J Biochem; 2000 Nov; 267(22):6624-32. PubMed ID: 11054115 [TBL] [Abstract][Full Text] [Related]
10. Redox properties of electron-transferring flavoprotein from Megasphaera elsdenii. Pace CP; Stankovich MT Biochim Biophys Acta; 1987 Feb; 911(3):267-76. PubMed ID: 3814604 [TBL] [Abstract][Full Text] [Related]
11. Laser-flash-photolysis studies of p-cresol methylhydroxylase. Electron-transfer properties of the flavin and haem components. Bhattacharyya A; Tollin G; McIntire W; Singer TP Biochem J; 1985 Jun; 228(2):337-45. PubMed ID: 2990445 [TBL] [Abstract][Full Text] [Related]
12. Pseudomonas cepacia 3-hydroxybenzoate 6-hydroxylase: stereochemistry, isotope effects, and kinetic mechanism. Yu YM; Wang LH; Tu SC Biochemistry; 1987 Feb; 26(4):1105-10. PubMed ID: 3552041 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a flavoprotein iodotyrosine deiodinase from bovine thyroid. Flavin nucleotide binding and oxidation-reduction properties. Goswami A; Rosenberg IN J Biol Chem; 1979 Dec; 254(24):12326-30. PubMed ID: 500718 [TBL] [Abstract][Full Text] [Related]
14. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related]
15. Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase. Ravasio S; Curti B; Vanoni MA Biochemistry; 2001 May; 40(18):5533-41. PubMed ID: 11331018 [TBL] [Abstract][Full Text] [Related]
16. Studies of the redox properties of CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3): two important enzymes involved in the biosynthesis of ascarylose. Burns KD; Pieper PA; Liu HW; Stankovich MT Biochemistry; 1996 Jun; 35(24):7879-89. PubMed ID: 8672489 [TBL] [Abstract][Full Text] [Related]
17. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer. Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677 [TBL] [Abstract][Full Text] [Related]
18. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer. Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of the salicylate hydroxylase reaction. V. Kinetic analyses. Takemori S; Nakamura M; Suzuki K; Katagiri M; Nakamura T Biochim Biophys Acta; 1972 Oct; 284(2):382-93. PubMed ID: 4344154 [No Abstract] [Full Text] [Related]
20. Thermodynamic basis of electron transfer in dihydroorotate dehydrogenase B from Lactococcus lactis: analysis by potentiometry, EPR spectroscopy, and ENDOR spectroscopy. Mohsen AW; Rigby SE; Jensen KF; Munro AW; Scrutton NS Biochemistry; 2004 Jun; 43(21):6498-510. PubMed ID: 15157083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]