These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 33904333)
1. Where Does the Peanut Smut Pathogen, Arias SL; Mary VS; Velez PA; Rodriguez MG; Otaiza-González SN; Theumer MG Plant Dis; 2021 Sep; 105(9):2268-2280. PubMed ID: 33904333 [TBL] [Abstract][Full Text] [Related]
2. First draft genome of Thecaphora frezii, causal agent of peanut smut disease. Arias RS; Conforto C; Orner VA; Carloni EJ; Soave JH; Massa AN; Lamb MC; Bernardi-Lima N; Rago AM BMC Genom Data; 2023 Feb; 24(1):9. PubMed ID: 36793017 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional study of genes involved in the passage from teliospore to hyphae stage in the fungus Thecaphora frezii, the causal agent of peanut smut. Díaz MS; Soria NW; Figueroa AC; Yang P; Badariotti EH; Alasino VR; Vélez P; Beltramo DM Rev Argent Microbiol; 2024; 56(2):175-186. PubMed ID: 38336597 [TBL] [Abstract][Full Text] [Related]
4. The Plant-Dependent Life Cycle of Thecaphora thlaspeos: A Smut Fungus Adapted to Brassicaceae. Frantzeskakis L; Courville KJ; Plücker L; Kellner R; Kruse J; Brachmann A; Feldbrügge M; Göhre V Mol Plant Microbe Interact; 2017 Apr; 30(4):271-282. PubMed ID: 28421861 [TBL] [Abstract][Full Text] [Related]
5. Smut infection of perennial hosts: the genome and the transcriptome of the Brassicaceae smut fungus Thecaphora thlaspeos reveal functionally conserved and novel effectors. Courville KJ; Frantzeskakis L; Gul S; Haeger N; Kellner R; Heßler N; Day B; Usadel B; Gupta YK; van Esse HP; Brachmann A; Kemen E; Feldbrügge M; Göhre V New Phytol; 2019 May; 222(3):1474-1492. PubMed ID: 30663769 [TBL] [Abstract][Full Text] [Related]
6. Molecular Interactions Between Smut Fungi and Their Host Plants. Zuo W; Ökmen B; Depotter JRL; Ebert MK; Redkar A; Misas Villamil J; Doehlemann G Annu Rev Phytopathol; 2019 Aug; 57():411-430. PubMed ID: 31337276 [TBL] [Abstract][Full Text] [Related]
7. Expression and localization of tubulin isotypes and its mRNAs during Thecaphora frezii developments. Figueroa AC; Díaz MS; Alasino RV; Yang P; Soria NW; Beltramo DM FEMS Microbiol Ecol; 2022 Oct; 98(11):. PubMed ID: 36208160 [TBL] [Abstract][Full Text] [Related]
8. Genotyping tools and resources to assess peanut germplasm: smut-resistant landraces as a case study. Massa AN; Bressano M; Soave JH; Buteler MI; Seijo G; Sobolev VS; Orner VA; Oddino C; Soave SJ; Faustinelli PC; de Blas FJ; Lamb MC; Arias RS PeerJ; 2021; 9():e10581. PubMed ID: 33575123 [TBL] [Abstract][Full Text] [Related]
9. Genetic mapping and QTL analysis for peanut smut resistance. de Blas FJ; Bruno CI; Arias RS; Ballén-Taborda C; Mamani E; Oddino C; Rosso M; Costero BP; Bressano M; Soave JH; Soave SJ; Buteler MI; Seijo JG; Massa AN BMC Plant Biol; 2021 Jul; 21(1):312. PubMed ID: 34215182 [TBL] [Abstract][Full Text] [Related]
10. Introgression of peanut smut resistance from landraces to elite peanut cultivars (Arachis hypogaea L.). Bressano M; Massa AN; Arias RS; de Blas F; Oddino C; Faustinelli PC; Soave S; Soave JH; Pérez MA; Sobolev VS; Lamb MC; Balzarini M; Buteler MI; Seijo JG PLoS One; 2019; 14(2):e0211920. PubMed ID: 30735547 [TBL] [Abstract][Full Text] [Related]
11. Peanut Smut in Argentina: An Analysis of the Disease, Advances, and Challenges. Paredes JA; Cazón LI; Conforto EC; Rago A Plant Dis; 2024 Sep; 108(9):2593-2606. PubMed ID: 38616392 [TBL] [Abstract][Full Text] [Related]
12. Changes of lipids composition in different ontogenetic stages of Thecaphora frezii: expression of key enzymes for lipid biosynthetic pathways. Díaz MS; Figueroa AC; Alasino VR; Turco M; Fernández A; Marino B; Soria NW; Beltramo DM J Appl Microbiol; 2023 Jan; 134(1):. PubMed ID: 36724262 [TBL] [Abstract][Full Text] [Related]
13. Peanut Smut: From an Emerging Disease to an Actual Threat to Argentine Peanut Production. Rago AM; Cazón LI; Paredes JA; Molina JPE; Conforto EC; Bisonard EM; Oddino C Plant Dis; 2017 Mar; 101(3):400-408. PubMed ID: 30677350 [TBL] [Abstract][Full Text] [Related]
15. Broad Genomic Sampling Reveals a Smut Pathogenic Ancestry of the Fungal Clade Ustilaginomycotina. Kijpornyongpan T; Mondo SJ; Barry K; Sandor L; Lee J; Lipzen A; Pangilinan J; LaButti K; Hainaut M; Henrissat B; Grigoriev IV; Spatafora JW; Aime MC Mol Biol Evol; 2018 Aug; 35(8):1840-1854. PubMed ID: 29771364 [TBL] [Abstract][Full Text] [Related]
16. "When worlds collide and smuts converge": Tales from the 1st International Ustilago/Smut Convergence. Saville BJ; Perlin MH Fungal Genet Biol; 2019 Nov; 132():103260. PubMed ID: 31394176 [TBL] [Abstract][Full Text] [Related]
17. Induction of defence response in peanut elicited by Figueredo MS; Kearney M; Zuza M; Loser U; Rago A; Fabra A; Tonelli ML J Biosci; 2024; 49():. PubMed ID: 39402958 [TBL] [Abstract][Full Text] [Related]
18. Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the Smut Fungus Melanopsichium pennsylvanicum. Sharma R; Mishra B; Runge F; Thines M Genome Biol Evol; 2014 Jul; 6(8):2034-49. PubMed ID: 25062916 [TBL] [Abstract][Full Text] [Related]
19. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis. Tanaka S; Schweizer G; Rössel N; Fukada F; Thines M; Kahmann R Nat Microbiol; 2019 Feb; 4(2):251-257. PubMed ID: 30510169 [TBL] [Abstract][Full Text] [Related]