These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 33904394)
1. Vascular-derived SPARC and SerpinE1 regulate interneuron tangential migration and accelerate functional maturation of human stem cell-derived interneurons. Genestine M; Ambriz D; Crabtree GW; Dummer P; Molotkova A; Quintero M; Mela A; Biswas S; Feng H; Zhang C; Canoll P; Hargus G; Agalliu D; Gogos JA; Au E Elife; 2021 Apr; 10():. PubMed ID: 33904394 [TBL] [Abstract][Full Text] [Related]
2. RhoA and Cdc42 are required in pre-migratory progenitors of the medial ganglionic eminence ventricular zone for proper cortical interneuron migration. Katayama K; Imai F; Campbell K; Lang RA; Zheng Y; Yoshida Y Development; 2013 Aug; 140(15):3139-45. PubMed ID: 23861058 [TBL] [Abstract][Full Text] [Related]
3. Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development. Liu Z; Zhang Z; Lindtner S; Li Z; Xu Z; Wei S; Liang Q; Wen Y; Tao G; You Y; Chen B; Wang Y; Rubenstein JL; Yang Z Cereb Cortex; 2019 Jun; 29(6):2653-2667. PubMed ID: 29878134 [TBL] [Abstract][Full Text] [Related]
4. Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain. Voronova A; Yuzwa SA; Wang BS; Zahr S; Syal C; Wang J; Kaplan DR; Miller FD Neuron; 2017 May; 94(3):500-516.e9. PubMed ID: 28472653 [TBL] [Abstract][Full Text] [Related]
5. Nests of dividing neuroblasts sustain interneuron production for the developing human brain. Paredes MF; Mora C; Flores-Ramirez Q; Cebrian-Silla A; Del Dosso A; Larimer P; Chen J; Kang G; Gonzalez Granero S; Garcia E; Chu J; Delgado R; Cotter JA; Tang V; Spatazza J; Obernier K; Ferrer Lozano J; Vento M; Scott J; Studholme C; Nowakowski TJ; Kriegstein AR; Oldham MC; Hasenstaub A; Garcia-Verdugo JM; Alvarez-Buylla A; Huang EJ Science; 2022 Jan; 375(6579):eabk2346. PubMed ID: 35084970 [TBL] [Abstract][Full Text] [Related]
6. Synaptic integration of transplanted interneuron progenitor cells into native cortical networks. Howard MA; Baraban SC J Neurophysiol; 2016 Aug; 116(2):472-8. PubMed ID: 27226453 [TBL] [Abstract][Full Text] [Related]
7. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence. Steinecke A; Gampe C; Zimmer G; Rudolph J; Bolz J Development; 2014 Jan; 141(2):460-71. PubMed ID: 24381199 [TBL] [Abstract][Full Text] [Related]
8. Efficient specification of interneurons from human pluripotent stem cells by dorsoventral and rostrocaudal modulation. Kim TG; Yao R; Monnell T; Cho JH; Vasudevan A; Koh A; Peeyush KT; Moon M; Datta D; Bolshakov VY; Kim KS; Chung S Stem Cells; 2014 Jul; 32(7):1789-804. PubMed ID: 24648391 [TBL] [Abstract][Full Text] [Related]
9. Extended Production of Cortical Interneurons into the Third Trimester of Human Gestation. Arshad A; Vose LR; Vinukonda G; Hu F; Yoshikawa K; Csiszar A; Brumberg JC; Ballabh P Cereb Cortex; 2016 May; 26(5):2242-2256. PubMed ID: 25882040 [TBL] [Abstract][Full Text] [Related]
10. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells. Tyson JA; Goldberg EM; Maroof AM; Xu Q; Petros TJ; Anderson SA Development; 2015 Apr; 142(7):1267-78. PubMed ID: 25804737 [TBL] [Abstract][Full Text] [Related]
11. Atypical PKC and Notch Inhibition Differentially Modulate Cortical Interneuron Subclass Fate from Embryonic Stem Cells. Tischfield DJ; Kim J; Anderson SA Stem Cell Reports; 2017 May; 8(5):1135-1143. PubMed ID: 28416285 [TBL] [Abstract][Full Text] [Related]
12. Dopamine stimulates differentiation and migration of cortical interneurons. Ohira K Biochem Biophys Res Commun; 2019 May; 512(3):577-583. PubMed ID: 30910356 [TBL] [Abstract][Full Text] [Related]
13. Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity. Larimer P; Spatazza J; Espinosa JS; Tang Y; Kaneko M; Hasenstaub AR; Stryker MP; Alvarez-Buylla A Cell Rep; 2016 Aug; 16(5):1391-1404. PubMed ID: 27425623 [TBL] [Abstract][Full Text] [Related]
14. An interneuron progenitor maintains neurogenic potential in vivo and differentiates into GABAergic interneurons after transplantation in the postnatal rat brain. Wang Q; Hong P; Gao H; Chen Y; Yang Q; Jiang M; Li H Sci Rep; 2016 Jan; 6():19003. PubMed ID: 26750620 [TBL] [Abstract][Full Text] [Related]
15. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. Miyoshi G; Young A; Petros T; Karayannis T; McKenzie Chang M; Lavado A; Iwano T; Nakajima M; Taniguchi H; Huang ZJ; Heintz N; Oliver G; Matsuzaki F; Machold RP; Fishell G J Neurosci; 2015 Sep; 35(37):12869-89. PubMed ID: 26377473 [TBL] [Abstract][Full Text] [Related]
16. Neocortical integration of transplanted GABA progenitor cells from wild type and GABA(B) receptor knockout mouse donors. Sebe JY; Looke-Stewart E; Dinday MT; Alvarez-Buylla A; Baraban SC Neurosci Lett; 2014 Feb; 561():52-7. PubMed ID: 24291697 [TBL] [Abstract][Full Text] [Related]
17. Origins of cortical interneuron subtypes. Xu Q; Cobos I; De La Cruz E; Rubenstein JL; Anderson SA J Neurosci; 2004 Mar; 24(11):2612-22. PubMed ID: 15028753 [TBL] [Abstract][Full Text] [Related]
18. Interneuron Origins in the Embryonic Porcine Medial Ganglionic Eminence. Casalia ML; Li T; Ramsay H; Ross PJ; Paredes MF; Baraban SC J Neurosci; 2021 Apr; 41(14):3105-3119. PubMed ID: 33637558 [TBL] [Abstract][Full Text] [Related]
19. Vesicular GABA Transporter Is Necessary for Transplant-Induced Critical Period Plasticity in Mouse Visual Cortex. Priya R; Rakela B; Kaneko M; Spatazza J; Larimer P; Hoseini MS; Hasenstaub AR; Alvarez-Buylla A; Stryker MP J Neurosci; 2019 Apr; 39(14):2635-2648. PubMed ID: 30705101 [TBL] [Abstract][Full Text] [Related]
20. Transplantation of Chemogenetically Engineered Cortical Interneuron Progenitors into Early Postnatal Mouse Brains. Denaxa M; Neves G; Burrone J; Pachnis V J Vis Exp; 2019 Aug; (150):. PubMed ID: 31498303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]