These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33904718)

  • 1. Searching Configurations in Uncertainty Space: Active Learning of High-Dimensional Neural Network Reactive Potentials.
    Lin Q; Zhang L; Zhang Y; Jiang B
    J Chem Theory Comput; 2021 May; 17(5):2691-2701. PubMed ID: 33904718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks.
    Schwalbe-Koda D; Tan AR; Gómez-Bombarelli R
    Nat Commun; 2021 Aug; 12(1):5104. PubMed ID: 34429418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatically growing global reactive neural network potential energy surfaces: A trajectory-free active learning strategy.
    Lin Q; Zhang Y; Zhao B; Jiang B
    J Chem Phys; 2020 Apr; 152(15):154104. PubMed ID: 32321263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling.
    Ludwig J; Vlachos DG
    J Chem Phys; 2007 Oct; 127(15):154716. PubMed ID: 17949200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representing globally accurate reactive potential energy surfaces with complex topography by combining Gaussian process regression and neural networks.
    Yang Z; Chen H; Chen M
    Phys Chem Chem Phys; 2022 Jun; 24(21):12827-12836. PubMed ID: 35470359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical studies on triplet-state driven dissociation of formaldehyde by quasi-classical molecular dynamics simulation on machine-learning potential energy surface.
    Lin S; Peng D; Yang W; Gu FL; Lan Z
    J Chem Phys; 2021 Dec; 155(21):214105. PubMed ID: 34879677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics investigation of the bimolecular reaction BeH + H(2) --> BeH(2) + H on an ab initio potential-energy surface obtained using neural network methods with both potential and gradient accuracy determination.
    Le HM; Raff LM
    J Phys Chem A; 2010 Jan; 114(1):45-53. PubMed ID: 19852450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural-network potential energy surface with small database and high precision: A benchmark of the H + H
    Song Q; Zhang Q; Meng Q
    J Chem Phys; 2019 Sep; 151(11):114302. PubMed ID: 31542037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system.
    Li J; Guo H
    J Chem Phys; 2015 Dec; 143(21):214304. PubMed ID: 26646879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting.
    Le HM; Huynh S; Raff LM
    J Chem Phys; 2009 Jul; 131(1):014107. PubMed ID: 19586096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training Neural Nets To Learn Reactive Potential Energy Surfaces Using Interactive Quantum Chemistry in Virtual Reality.
    Amabilino S; Bratholm LA; Bennie SJ; Vaucher AC; Reiher M; Glowacki DR
    J Phys Chem A; 2019 May; 123(20):4486-4499. PubMed ID: 30892040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.
    Shen L; Yang W
    J Chem Theory Comput; 2018 Mar; 14(3):1442-1455. PubMed ID: 29438614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cis-->trans, trans-->cis isomerizations and N-O bond dissociation of nitrous acid (HONO) on an ab initio potential surface obtained by novelty sampling and feed-forward neural network fitting.
    Le HM; Raff LM
    J Chem Phys; 2008 May; 128(19):194310. PubMed ID: 18500868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions.
    Jiang B; Guo H
    J Chem Phys; 2014 Jul; 141(3):034109. PubMed ID: 25053303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Clustering Algorithms to Partitioning Configuration Space in Fitting Reactive Potential Energy Surfaces.
    Guan Y; Yang S; Zhang DH
    J Phys Chem A; 2018 Mar; 122(12):3140-3147. PubMed ID: 29513015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Six-dimensional quantum dynamics for dissociative chemisorption of H2 and D2 on Ag(111) on a permutation invariant potential energy surface.
    Jiang B; Guo H
    Phys Chem Chem Phys; 2014 Dec; 16(45):24704-15. PubMed ID: 25315820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of high-dimensional neural network potentials using environment-dependent atom pairs.
    Jose KV; Artrith N; Behler J
    J Chem Phys; 2012 May; 136(19):194111. PubMed ID: 22612084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Global Potential Energy Surfaces for the H + CH
    Lu D; Behler J; Li J
    J Phys Chem A; 2020 Jul; 124(28):5737-5745. PubMed ID: 32530628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automating the Development of High-Dimensional Reactive Potential Energy Surfaces with the robosurfer Program System.
    Győri T; Czakó G
    J Chem Theory Comput; 2020 Jan; 16(1):51-66. PubMed ID: 31851508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Network Potential Energy Surfaces for Small Molecules and Reactions.
    Manzhos S; Carrington T
    Chem Rev; 2021 Aug; 121(16):10187-10217. PubMed ID: 33021368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.