BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33904728)

  • 1. Thermal and Mechanical Performances of the Superflexible, Hydrophobic, Silica-Based Aerogel for Thermal Insulation at Ultralow Temperature.
    Zhao Z; Cui Y; Kong Y; Ren J; Jiang X; Yan W; Li M; Tang J; Liu X; Shen X
    ACS Appl Mater Interfaces; 2021 May; 13(18):21286-21298. PubMed ID: 33904728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralight, hydrophobic, monolithic konjac glucomannan-silica composite aerogel with thermal insulation and mechanical properties.
    Zhu J; Hu J; Jiang C; Liu S; Li Y
    Carbohydr Polym; 2019 Mar; 207():246-255. PubMed ID: 30600006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and Thermal Insulation Property of Silica Composite Aerogel.
    Shang L; Lyu Y; Han W
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30917534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat-Treated Aramid Pulp/Silica Aerogel Composites with Improved Thermal Stability and Thermal Insulation.
    Li Z; Shen K; Hu M; Shulga YM; Chen Z; Liu Q; Li M; Wu X
    Gels; 2023 Sep; 9(9):. PubMed ID: 37754430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Silica Aerogels by Ambient Pressure Drying without Causing Equipment Corrosion.
    Zhu L; Wang Y; Cui S; Yang F; Nie Z; Li Q; Wei Q
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30072663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent silica aerogel slabs synthesized from nanoparticle colloidal suspensions at near ambient conditions on omniphobic liquid substrates.
    Marszewski M; King SC; Galy T; Kashanchi GN; Dashti A; Yan Y; Li M; Butts DM; McNeil PE; Lan E; Dunn B; Hu Y; Tolbert SH; Pilon L
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):884-897. PubMed ID: 34454313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cost-Effective Preparation of Hydrophobic and Thermal-Insulating Silica Aerogels.
    Shan J; Shan Y; Zou C; Hong Y; Liu J; Guo X
    Nanomaterials (Basel); 2024 Jan; 14(1):. PubMed ID: 38202574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofibrous Kevlar Aerogel Threads for Thermal Insulation in Harsh Environments.
    Liu Z; Lyu J; Fang D; Zhang X
    ACS Nano; 2019 May; 13(5):5703-5711. PubMed ID: 31042355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralight and Hydrophobic Palygorskite-based Aerogels with Prominent Thermal Insulation and Flame Retardancy.
    Jin H; Zhou X; Xu T; Dai C; Gu Y; Yun S; Hu T; Guan G; Chen J
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11815-11824. PubMed ID: 32092256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic Silk Fibroin-Agarose Composite Aerogel Fibers with Elasticity for Thermal Insulation Applications.
    Du Y; Jiang P; Yang X; Fu R; Liu L; Miao C; Wang Y; Sai H
    Gels; 2024 Apr; 10(4):. PubMed ID: 38667686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Gelation for Synthesis of Surface-Modified Silica Aerogel Powders.
    Lee KJ; Lee JM; Nam KS; Hwang H
    Gels; 2021 Nov; 7(4):. PubMed ID: 34940302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal Insulation Textile.
    Sai H; Wang M; Miao C; Song Q; Wang Y; Fu R; Wang Y; Ma L; Hao Y
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Evolution of Insulation Performance of Fiber-Reinforced Silica Aerogel after High-Temperature Treatment.
    Gao R; Zhou Z; Zhang H; Zhang X; Wu Y
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Characterization of the Thermal Conductivity and Microstructure of Opacifier-Fiber-Aerogel Composite.
    Zhang H; Zhang C; Ji W; Wang X; Li Y; Tao W
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30200271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyimide Aerogel Fibers with Superior Flame Resistance, Strength, Hydrophobicity, and Flexibility Made via a Universal Sol-Gel Confined Transition Strategy.
    Li X; Dong G; Liu Z; Zhang X
    ACS Nano; 2021 Mar; 15(3):4759-4768. PubMed ID: 33636972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic-Inorganic Double-Gel System Thermally Insulating and Hydrophobic Polyimide Aerogel.
    Xiong L; Zheng W; Cao S; Zheng Y
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrosilylation Adducts to Produce Wide-Temperature Flexible Polysiloxane Aerogel under Ambient Temperature and Pressure Drying.
    Guo BF; Wang YJ; Qu ZH; Yang F; Qin YQ; Li Y; Zhang GD; Gao JF; Shi Y; Song P; Tang LC
    Small; 2024 Apr; 20(14):e2309272. PubMed ID: 37988706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrahigh-strength carbon aerogels for high temperature thermal insulation.
    Wu K; Zhou Q; Cao J; Qian Z; Niu B; Long D
    J Colloid Interface Sci; 2022 Mar; 609():667-675. PubMed ID: 34823850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An All-Ceramic, Anisotropic, and Flexible Aerogel Insulation Material.
    An L; Wang J; Petit D; Armstrong JN; Hanson K; Hamilton J; Souza M; Zhao D; Li C; Liu Y; Huang Y; Hu Y; Li Z; Shao Z; Desjarlais AO; Ren S
    Nano Lett; 2020 May; 20(5):3828-3835. PubMed ID: 32267711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.