These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. [Plan for finding homologies in nucleotide sequence databases using preliminarily calculated sequence samples]. Filatov VB; Golovanov EI; Aleksandrov AA Mol Biol (Mosk); 1995; 29(4):790-800. PubMed ID: 7476945 [TBL] [Abstract][Full Text] [Related]
5. [A new method of global search for functional DNA segments using a fractal representation of nucleotide texts]. Korolev SE; Solov'ev VV; Tumanian VG Biofizika; 1992; 37(5):837-47. PubMed ID: 1472562 [TBL] [Abstract][Full Text] [Related]
6. Identification and analysis of multigene families by comparison of exon fingerprints. Brown NP; Whittaker AJ; Newell WR; Rawlings CJ; Beck S J Mol Biol; 1995 Jun; 249(2):342-59. PubMed ID: 7783198 [TBL] [Abstract][Full Text] [Related]
7. A novel sequence similarity searching and visualization method based on overlappingly translated nucleic acids: the blastNP. Biro JC; Biro JM Med Hypotheses; 2004; 62(4):568-74. PubMed ID: 15050109 [TBL] [Abstract][Full Text] [Related]
8. The distribution of the frequency of occurrence of nucleotide subsequences, based on their overlap capability. Gentleman JF; Mullin RC Biometrics; 1989 Mar; 45(1):35-52. PubMed ID: 2720059 [TBL] [Abstract][Full Text] [Related]
9. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes]. Zhang DL; Ji L; Li YD Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601 [TBL] [Abstract][Full Text] [Related]
10. Clustering of database sequences for fast homology search using upper bounds on alignment score. Itoh M; Akutsu T; Kanehisa M Genome Inform; 2004; 15(1):93-104. PubMed ID: 15712113 [TBL] [Abstract][Full Text] [Related]
11. [Computer programs for the analysis of nucleotide sequences (MALK)]. Mironov AA; Aleksandrov NN; Liunovskaia-Gurova LV; Kister AE Mol Biol (Mosk); 1987; 21(3):672-7. PubMed ID: 3657768 [TBL] [Abstract][Full Text] [Related]
12. SCARNA: fast and accurate structural alignment of RNA sequences by matching fixed-length stem fragments. Tabei Y; Tsuda K; Kin T; Asai K Bioinformatics; 2006 Jul; 22(14):1723-9. PubMed ID: 16690634 [TBL] [Abstract][Full Text] [Related]
13. A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Ji Y; Xu X; Stormo GD Bioinformatics; 2004 Jul; 20(10):1591-602. PubMed ID: 14962926 [TBL] [Abstract][Full Text] [Related]
14. Representation in stochastic search for phylogenetic tree reconstruction. Weber G; Ohno-Machado L; Shieber S J Biomed Inform; 2006 Feb; 39(1):43-50. PubMed ID: 16359929 [TBL] [Abstract][Full Text] [Related]
15. Prediction of protein subcellular localization. Yu CS; Chen YC; Lu CH; Hwang JK Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418 [TBL] [Abstract][Full Text] [Related]
16. A linear programming approach for identifying a consensus sequence on DNA sequences. Li HL; Fu CJ Bioinformatics; 2005 May; 21(9):1838-45. PubMed ID: 15671117 [TBL] [Abstract][Full Text] [Related]
17. Statistical studies of biomolecular sequences: score-based methods. Karlin S Philos Trans R Soc Lond B Biol Sci; 1994 Jun; 344(1310):391-402. PubMed ID: 7800709 [TBL] [Abstract][Full Text] [Related]
18. [Fast comparison of groups of sequences using computers]. Levchenko VF Biofizika; 1988; 33(4):713-4. PubMed ID: 3191185 [TBL] [Abstract][Full Text] [Related]
19. A test for the statistical significance of DNA sequence similarities for application in databank searches. Mott RF; Kirkwood TB; Curnow RN Comput Appl Biosci; 1989 Apr; 5(2):123-31. PubMed ID: 2720462 [TBL] [Abstract][Full Text] [Related]
20. [Rapid evaluation of nucleotide sequence homology by frequencies of oligonucleotides]. Zharkikh AA; Rzhetskiĭ AIu Dokl Akad Nauk SSSR; 1989; 308(5):1232-5. PubMed ID: 2612349 [No Abstract] [Full Text] [Related] [Next] [New Search]