These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33905049)

  • 1. Unwrapping the phase portrait features of adventitious crackle for auscultation and classification: a machine learning approach.
    Sreejyothi S; Renjini A; Raj V; Swapna MNS; Sankararaman SI
    J Biol Phys; 2021 Jun; 47(2):103-115. PubMed ID: 33905049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase portrait for high fidelity feature extraction and classification: A surrogate approach.
    Renjini A; Raj V; Swapna MS; Sreejyothi S; Sankararaman S
    Chaos; 2020 Nov; 30(11):113122. PubMed ID: 33261330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time series and fractal analyses of wheezing: a novel approach.
    Swapna MS; Renjini A; Raj V; Sreejyothi S; Sankararaman S
    Phys Eng Sci Med; 2020 Dec; 43(4):1339-1347. PubMed ID: 33057901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic thoracic image of crackle sounds using linear and nonlinear processing techniques.
    Charleston-Villalobos S; Dorantes-Méndez G; González-Camarena R; Chi-Lem G; Carrillo JG; Aljama-Corrales T
    Med Biol Eng Comput; 2011 Jan; 49(1):15-24. PubMed ID: 20652429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear time series and principal component analyses: Potential diagnostic tools for COVID-19 auscultation.
    Raj V; Renjini A; Swapna MS; Sreejyothi S; Sankararaman S
    Chaos Solitons Fractals; 2020 Nov; 140():110246. PubMed ID: 32863618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Respiratory Crackle Sounds via an Android Smartphone-based System.
    Olvera-Montes N; Reyes B; Charleston-Villalobos S; Gonzalez-Camarena R; MejiaAvila M; Dorantes-Mendez G; Reulecke S; Aljama-Corrales TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1620-1623. PubMed ID: 30440703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of ICA algorithms for the analysis of crackles sounds.
    Castañeda-Villa N; Charleston-Villalobos S; González-Camarena R; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():605-8. PubMed ID: 23365965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [New classification and analysis of lung sounds].
    Kikuchi K; Watanabe M; Hashizume T; Kawamura M; Kato R; Kobayashi K; Ishihara T
    Nihon Kyobu Geka Gakkai Zasshi; 1989 Dec; 37(12):2532-7. PubMed ID: 2625566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elimination of vesicular sounds from pulmonary crackle waveforms.
    Yeginer M; Kahya YP
    Comput Methods Programs Biomed; 2008 Jan; 89(1):1-13. PubMed ID: 18023914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring crackles.
    Hoevers J; Loudon RG
    Chest; 1990 Nov; 98(5):1240-3. PubMed ID: 2225972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feature extraction for pulmonary crackle representation via wavelet networks.
    Yeginer M; Kahya YP
    Comput Biol Med; 2009 Aug; 39(8):713-21. PubMed ID: 19539902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral and waveform characteristics of fine and coarse crackles.
    Munakata M; Ukita H; Doi I; Ohtsuka Y; Masaki Y; Homma Y; Kawakami Y
    Thorax; 1991 Sep; 46(9):651-7. PubMed ID: 1948794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature extraction using time-frequency/scale analysis and ensemble of feature sets for crackle detection.
    Serbes G; Sakar CO; Kahya YP; Aydin N
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3314-7. PubMed ID: 22255048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance based separation and energy based classification of lung sounds using tunable wavelet transform.
    Ulukaya S; Serbes G; Kahya YP
    Comput Biol Med; 2021 Apr; 131():104288. PubMed ID: 33676336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instantaneous frequency based index to characterize respiratory crackles.
    Speranza CG; Moraes R
    Comput Biol Med; 2018 Nov; 102():21-29. PubMed ID: 30240835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constrained Synthetic Sampling for Augmentation of Crackle Lung Sounds.
    Kala A; Elhilali M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Smartphone-Based System for Automated Bedside Detection of Crackle Sounds in Diffuse Interstitial Pneumonia Patients.
    Reyes BA; Olvera-Montes N; Charleston-Villalobos S; González-Camarena R; Mejía-Ávila M; Aljama-Corrales T
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30405036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of discontinuous adventitious lung sounds by Hilbert-Huang spectrum.
    Reyes BA; Charleston-Villalobos S; Gonzalez-Camarena R; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3620-3. PubMed ID: 19163493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Analysis System for Automated Respiratory Cycle Segmentation and Crackle Peak Detection.
    McLane I; Lauwers E; Stas T; Busch-Vishniac I; Ides K; Verhulst S; Steckel J
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1847-1860. PubMed ID: 34705660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust features for detection of crackles: an exploratory study.
    Mendes L; Carvalho P; Teixeira CA; Paiva RP; Henriques J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1473-6. PubMed ID: 25570247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.