These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3390516)

  • 1. Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin.
    Milder SJ; Bjorling SC; Kuntz ID; Kliger DS
    Biophys J; 1988 May; 53(5):659-64. PubMed ID: 3390516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein conformational relaxation following photodissociation of CO from carbonmonoxymyoglobin: picosecond circular dichroism and absorption studies.
    Xie XL; Simon JD
    Biochemistry; 1991 Apr; 30(15):3682-92. PubMed ID: 2015224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subpicosecond UV spectroscopy of carbonmonoxy-myoglobin: absorption and circular dichroism studies.
    Dartigalongue T; Niezborala C; Hache F
    Phys Chem Chem Phys; 2007 Apr; 9(13):1611-5. PubMed ID: 17429554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different relaxations in myoglobin after photolysis.
    Levantino M; Cupane A; Zimányi L; Ormos P
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14402-7. PubMed ID: 15385677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric intermediates in hemoglobin. 1. Nanosecond time-resolved circular dichroism spectroscopy.
    Björling SC; Goldbeck RA; Paquette SJ; Milder SJ; Kliger DS
    Biochemistry; 1996 Jul; 35(26):8619-27. PubMed ID: 8679624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved magnetic circular dichroism spectroscopy of photolyzed carbonmonoxy cytochrome c oxidase (cytochrome aa3).
    Goldbeck RA; Dawes TD; Einarsdóttir O; Woodruff WH; Kliger DS
    Biophys J; 1991 Jul; 60(1):125-34. PubMed ID: 1653049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of photolysis and rebinding kinetics in myoglobin using proximal ligand replacements.
    Cao W; Ye X; Sjodin T; Christian JF; Demidov AA; Berezhna S; Wang W; Barrick D; Sage JT; Champion PM
    Biochemistry; 2004 Aug; 43(34):11109-17. PubMed ID: 15323570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic studies on the interaction of Ga3+-hypocrellin A with myoglobin.
    Xie W; Wei S; Liu J; Ge X; Zhou L; Zhou J; Shen J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():109-15. PubMed ID: 24231746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved circular dichroism studies of protein folding intermediates of cytochrome c.
    Chen E; Wood MJ; Fink AL; Kliger DS
    Biochemistry; 1998 Apr; 37(16):5589-98. PubMed ID: 9548944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray-induced lysis of the Fe-CO bond in carbonmonoxy-myoglobin.
    Della Longa S; Arcovito A
    Inorg Chem; 2010 Nov; 49(21):9958-61. PubMed ID: 20929251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved circular dichroism in carbonmonoxy-myoglobin: the central role of the proximal histidine.
    Dartigalongue T; Hache F
    Chirality; 2006 May; 18(4):273-8. PubMed ID: 16534800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonexponential protein relaxation: dynamics of conformational change in myoglobin.
    Lim M; Jackson TA; Anfinrud PA
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5801-4. PubMed ID: 8516331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic evidence for nanosecond protein relaxation after photodissociation of myoglobin-CO.
    Esquerra RM; Goldbeck RA; Kim-Shapiro DB; Kliger DS
    Biochemistry; 1998 Dec; 37(50):17527-36. PubMed ID: 9860868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive line-shape narrowing in low-temperature inhomogeneous geminate recombination of CO to myoglobin.
    Agmon N
    Biochemistry; 1988 May; 27(9):3507-11. PubMed ID: 3390449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-rebinding in myoglobin as seen by time-resolved X-ray absorption spectroscopy.
    Natali F; Schmithüsen F
    Eur Biophys J; 2001; 30(1):63-8. PubMed ID: 11372534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural dynamics of myoglobin: FTIR-TDS study of NO migration and binding.
    Nienhaus K; Palladino P; Nienhaus GU
    Biochemistry; 2008 Jan; 47(3):935-48. PubMed ID: 18161992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial trajectory of carbon monoxide after photodissociation from myoglobin at cryogenic temperatures.
    Teng TY; Srajer V; Moffat K
    Biochemistry; 1997 Oct; 36(40):12087-100. PubMed ID: 9315847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural dynamics of myoglobin: spectroscopic and structural characterization of ligand docking sites in myoglobin mutant L29W.
    Nienhaus K; Deng P; Kriegl JM; Nienhaus GU
    Biochemistry; 2003 Aug; 42(32):9633-46. PubMed ID: 12911305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of x-ray absorption near edge structure data by a full multiple scattering procedure: the Fe-CO geometry in photolyzed carbonmonoxy-myoglobin single crystal.
    Della Longa S; Arcovito A; Girasole M; Hazemann JL; Benfatto M
    Phys Rev Lett; 2001 Oct; 87(15):155501. PubMed ID: 11580707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Picosecond resonance Raman evidence for unrelaxed heme in the (carbonmonoxy)myoglobin photoproduct.
    Dasgupta S; Spiro TG; Johnson CK; Dalickas GA; Hochstrasser RM
    Biochemistry; 1985 Sep; 24(20):5295-7. PubMed ID: 4074696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.