These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33905225)

  • 1. Intensified Energy Storage in High-Voltage Nanohybrid Supercapacitors
    Liu A; Zhang H; Xing C; Wang Y; Zhang J; Zhang X; Zhang S
    ACS Appl Mater Interfaces; 2021 May; 13(18):21349-21361. PubMed ID: 33905225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction to "Intensified Energy Storage in High-Voltage Nanohybrid Supercapacitors via the Efficient Coupling between TiNb
    Liu A; Zhang H; Xing C; Wang Y; Zhang J; Zhang X; Zhang S
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37937-37938. PubMed ID: 34314145
    [No Abstract]   [Full Text] [Related]  

  • 3. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of Ionic Liquids as High-Voltage Electrolytes for Supercapacitors.
    Pan S; Yao M; Zhang J; Li B; Xing C; Song X; Su P; Zhang H
    Front Chem; 2020; 8():261. PubMed ID: 32432074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MXene as a Charge Storage Host.
    Okubo M; Sugahara A; Kajiyama S; Yamada A
    Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Faradaic Interlayer Confinement and Carbon-Centered Macrostructure Designs for Ion Capture and the Recovery of Elements.
    Patil R; Das DK; Dutta S
    Chemistry; 2023 Jul; 29(38):e202301117. PubMed ID: 37147877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes.
    Bi S; Banda H; Chen M; Niu L; Chen M; Wu T; Wang J; Wang R; Feng J; Chen T; Dincă M; Kornyshev AA; Feng G
    Nat Mater; 2020 May; 19(5):552-558. PubMed ID: 32015536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbons and electrolytes for advanced supercapacitors.
    Béguin F; Presser V; Balducci A; Frackowiak E
    Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J; Vatamanu M; Bedrov D
    ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biredox ionic liquids: new opportunities toward high performance supercapacitors.
    Bodin C; Mourad E; Zigah D; Le Vot S; Freunberger SA; Favier F; Fontaine O
    Faraday Discuss; 2018 Jan; 206():393-404. PubMed ID: 28936498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Transition-metal Oxide Electrodes: Understanding the Role of Surface Engineering for High Energy Density Supercapacitors.
    Tomboc GM; Tesfaye Gadisa B; Jun M; Chaudhari NK; Kim H; Lee K
    Chem Asian J; 2020 Jun; 15(11):1628-1647. PubMed ID: 32301268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic Liquid Electrolytes for Electrochemical Energy Storage Devices.
    Kim E; Han J; Ryu S; Choi Y; Yoo J
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ether-Functionalized Sulfonium Ionic Liquid and Its Binary Mixtures with Acetonitrile as Electrolyte for Electrochemical Double Layer Capacitors: A Molecular Dynamics Study.
    Sampaio AM; Siqueira LJA
    J Phys Chem B; 2020 Jul; 124(30):6679-6689. PubMed ID: 32633518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations.
    Ozoliņš V; Zhou F; Asta M
    Acc Chem Res; 2013 May; 46(5):1084-93. PubMed ID: 23560700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercapacitive Properties of Micropore- and Mesopore-Rich Activated Carbon in Ionic-Liquid Electrolytes with Various Constituent Ions.
    Nguyen QD; Patra J; Hsieh CT; Li J; Dong QF; Chang JK
    ChemSusChem; 2019 Jan; 12(2):449-456. PubMed ID: 30548119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling the Formation of Solid Electrolyte Interphase and its Temperature Dependence in "Water-in-Salt" Supercapacitors.
    Quan T; Härk E; Xu Y; Ahmet I; Höhn C; Mei S; Lu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3979-3990. PubMed ID: 33427459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.