These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 33905261)
1. Sustainable food drying technologies based on renewable energy sources. Qu H; Masud MH; Islam M; Khan MIH; Ananno AA; Karim A Crit Rev Food Sci Nutr; 2022; 62(25):6872-6886. PubMed ID: 33905261 [TBL] [Abstract][Full Text] [Related]
2. A comprehensive review of solar photovoltaic hybrid food drying systems. Barisik Marasli D; Colak Gunes N; Tavman S Crit Rev Food Sci Nutr; 2022; 62(15):4152-4168. PubMed ID: 33480259 [TBL] [Abstract][Full Text] [Related]
3. Smart agriculture through using cost-effective and high-efficiency solar drying. Çiftçioğlu GA; Kadırgan F; Kadırgan MAN; Kaynak G Heliyon; 2020 Feb; 6(2):e03357. PubMed ID: 32083211 [TBL] [Abstract][Full Text] [Related]
4. Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: A review. Rasheed T; Anwar MT; Ahmad N; Sher F; Khan SU; Ahmad A; Khan R; Wazeer I J Environ Manage; 2021 Jun; 287():112257. PubMed ID: 33690013 [TBL] [Abstract][Full Text] [Related]
5. Sewage sludge drying process integration with a waste-to-energy power plant. Bianchini A; Bonfiglioli L; Pellegrini M; Saccani C Waste Manag; 2015 Aug; 42():159-65. PubMed ID: 25959614 [TBL] [Abstract][Full Text] [Related]
6. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique. Sotiropoulos A; Malamis D; Michailidis P; Krokida M; Loizidou M Environ Technol; 2016; 37(8):929-39. PubMed ID: 26507489 [TBL] [Abstract][Full Text] [Related]
7. Influence of thermal assistance on the biodegradation of organics during food waste bio-drying: Microbial stimulation and energy assessment. Ma J; Mu L; Zhang Z; Wang Z; Kong W; Feng S; Li A; Shen B; Zhang L Chemosphere; 2021 Jun; 272():129875. PubMed ID: 33582509 [TBL] [Abstract][Full Text] [Related]
8. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications. Perna A; Minutillo M; Lubrano Lavadera A; Jannelli E Waste Manag; 2018 Mar; 73():424-438. PubMed ID: 28965703 [TBL] [Abstract][Full Text] [Related]
9. Sustainable management of biological solids in small treatment plants: overview of strategies and reuse options for a solar drying facility in Poland. Boguniewicz-Zablocka J; Klosok-Bazan I; Capodaglio AG Environ Sci Pollut Res Int; 2021 May; 28(19):24680-24693. PubMed ID: 32710361 [TBL] [Abstract][Full Text] [Related]
10. Water-energy nexus: desalination technologies and renewable energy sources. Panagopoulos A Environ Sci Pollut Res Int; 2021 May; 28(17):21009-21022. PubMed ID: 33704643 [TBL] [Abstract][Full Text] [Related]
11. Sewage sludge drying by energy recovery from OFMSW composting: preliminary feasibility evaluation. Rada EC; Ragazzi M; Villotti S; Torretta V Waste Manag; 2014 May; 34(5):859-66. PubMed ID: 24656467 [TBL] [Abstract][Full Text] [Related]
12. Electricity generation: options for reduction in carbon emissions. Whittington HW Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive review on ideas, designs and current techniques in solar dryer for food applications. Naveenkumar R; Ravichandran M; Harish R; Ruskin JJ; Pozhingiyarasan N; Kolanjinathan A Environ Sci Pollut Res Int; 2023 Sep; 30(41):93435-93461. PubMed ID: 37561295 [TBL] [Abstract][Full Text] [Related]
14. Performance analysis of a novel thermal energy storage integrated solar dryer for drying of coconuts. Radhakrishnan Govindan G; Sattanathan M; Muthiah M; Ranjitharamasamy SP; Athikesavan MM Environ Sci Pollut Res Int; 2022 May; 29(23):35230-35240. PubMed ID: 35050476 [TBL] [Abstract][Full Text] [Related]
15. Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. Udomkun P; Romuli S; Schock S; Mahayothee B; Sartas M; Wossen T; Njukwe E; Vanlauwe B; Müller J J Environ Manage; 2020 Aug; 268():110730. PubMed ID: 32510451 [TBL] [Abstract][Full Text] [Related]
16. Spent coffee ground as renewable energy source: Evaluation of the drying processes. Tun MM; Raclavská H; Juchelková D; Růžičková J; Šafář M; Štrbová K; Gikas P J Environ Manage; 2020 Dec; 275():111204. PubMed ID: 32854049 [TBL] [Abstract][Full Text] [Related]
17. Factors affecting energy efficiency of microwave drying of foods: an updated understanding. An NN; Li D; Wang LJ; Wang Y Crit Rev Food Sci Nutr; 2024; 64(9):2618-2633. PubMed ID: 36134904 [TBL] [Abstract][Full Text] [Related]
18. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Gumisiriza R; Hawumba JF; Okure M; Hensel O Biotechnol Biofuels; 2017; 10():11. PubMed ID: 28066511 [TBL] [Abstract][Full Text] [Related]
19. Sustainable Food and Agriculture: Employment of Renewable Energy Technologies. Gorjian S; Fakhraei O; Gorjian A; Sharafkhani A; Aziznejad A Curr Robot Rep; 2022; 3(3):153-163. PubMed ID: 35600253 [TBL] [Abstract][Full Text] [Related]
20. Sustainable management of municipal solid waste through waste-to-energy technologies. Varjani S; Shahbeig H; Popat K; Patel Z; Vyas S; Shah AV; Barceló D; Hao Ngo H; Sonne C; Shiung Lam S; Aghbashlo M; Tabatabaei M Bioresour Technol; 2022 Jul; 355():127247. PubMed ID: 35490955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]