BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33905321)

  • 1. Bio-Inspired Haptic Feedback for Artificial Palpation in Robotic Surgery.
    Ouyang Q; Wu J; Sun S; Pensa J; Abiri A; Dutson E; Bisley J
    IEEE Trans Biomed Eng; 2021 Oct; 68(10):3184-3193. PubMed ID: 33905321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial palpation in robotic surgery using haptic feedback.
    Abiri A; Juo YY; Tao A; Askari SJ; Pensa J; Bisley JW; Dutson EP; Grundfest WS
    Surg Endosc; 2019 Apr; 33(4):1252-1259. PubMed ID: 30187198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study.
    Saracino A; Oude-Vrielink TJC; Menciassi A; Sinibaldi E; Mylonas GP
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3452-3463. PubMed ID: 32746002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the Localization of Uterine Leiomyomas Through Cutaneous Softness Rendering for Robot-Assisted Surgical Palpation Applications.
    Doria D; Fani S; Giannini A; Simoncini T; Bianchi M
    IEEE Trans Haptics; 2021; 14(3):503-512. PubMed ID: 33556016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.
    Pacchierotti C; Prattichizzo D; Kuchenbecker KJ
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):278-87. PubMed ID: 26186763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using visual cues to enhance haptic feedback for palpation on virtual model of soft tissue.
    Li M; Konstantinova J; Secco EL; Jiang A; Liu H; Nanayakkara T; Seneviratne LD; Dasgupta P; Althoefer K; Wurdemann HA
    Med Biol Eng Comput; 2015 Nov; 53(11):1177-86. PubMed ID: 26018755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Sensor for Tissue Mechanical Property Detection During Robotic Surgery.
    Sun S; Dutson EP; Geoghegan R
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4834-4838. PubMed ID: 36086573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haptic feedback in the da Vinci Research Kit (dVRK): A user study based on grasping, palpation, and incision tasks.
    Saracino A; Deguet A; Staderini F; Boushaki MN; Cianchi F; Menciassi A; Sinibaldi E
    Int J Med Robot; 2019 Aug; 15(4):e1999. PubMed ID: 30970387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of visual force feedback on robot-assisted surgical task performance.
    Reiley CE; Akinbiyi T; Burschka D; Chang DC; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2008 Jan; 135(1):196-202. PubMed ID: 18179942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery.
    Koehn JK; Kuchenbecker KJ
    Surg Endosc; 2015 Oct; 29(10):2970-83. PubMed ID: 25539693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.
    Wottawa CR; Genovese B; Nowroozi BN; Hart SD; Bisley JW; Grundfest WS; Dutson EP
    Surg Endosc; 2016 Aug; 30(8):3198-209. PubMed ID: 26514132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field experiment of a telesurgery system using a surgical robot with haptic feedback.
    Ota M; Oki E; Nakanoko T; Tanaka Y; Toyota S; Hu Q; Nakaji Y; Nakanishi R; Ando K; Kimura Y; Hisamatsu Y; Mimori K; Takahashi Y; Morohashi H; Kanno T; Tadano K; Kawashima K; Takano H; Ebihara Y; Shiota M; Inokuchi J; Eto M; Yoshizumi T; Hakamada K; Hirano S; Mori M
    Surg Today; 2024 Apr; 54(4):375-381. PubMed ID: 37653350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods and mechanisms for contact feedback in a robot-assisted minimally invasive environment.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    Surg Endosc; 2006 Oct; 20(10):1570-9. PubMed ID: 16897288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Modal Haptic Feedback for Grip Force Reduction in Robotic Surgery.
    Abiri A; Pensa J; Tao A; Ma J; Juo YY; Askari SJ; Bisley J; Rosen J; Dutson EP; Grundfest WS
    Sci Rep; 2019 Mar; 9(1):5016. PubMed ID: 30899082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a master-slave 3D printed robotic surgical finger with haptic feedback.
    Hamdi JT; Munshi S; Azam S; Omer A
    J Robot Surg; 2024 Jan; 18(1):43. PubMed ID: 38236452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Modular 3-Degrees-of-Freedom Force Sensor for Robot-Assisted Minimally Invasive Surgery Research.
    Chua Z; Okamura AM
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.