These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice. Mikami M; Toki S; Endo M Plant Cell Physiol; 2016 May; 57(5):1058-68. PubMed ID: 26936792 [TBL] [Abstract][Full Text] [Related]
7. Clearance of residual genome editing components used for ex vivo genome-editing of allogeneic cell therapy products. Chialastri A; Hoffman H; Fink D; Dashnau JL Cytotherapy; 2024 Nov; 26(11):1341-1352. PubMed ID: 39023463 [TBL] [Abstract][Full Text] [Related]
8. CT-Finder: A Web Service for CRISPR Optimal Target Prediction and Visualization. Zhu H; Misel L; Graham M; Robinson ML; Liang C Sci Rep; 2016 May; 6():25516. PubMed ID: 27210050 [TBL] [Abstract][Full Text] [Related]
9. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis. Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560 [TBL] [Abstract][Full Text] [Related]
10. Exploiting off-targeting in guide-RNAs for CRISPR systems for simultaneous editing of multiple genes. Ferreira R; Gatto F; Nielsen J FEBS Lett; 2017 Oct; 591(20):3288-3295. PubMed ID: 28884816 [TBL] [Abstract][Full Text] [Related]
12. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure. Soriano V AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352 [TBL] [Abstract][Full Text] [Related]
13. CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity. Zhu H; Liang C Bioinformatics; 2019 Aug; 35(16):2783-2789. PubMed ID: 30615056 [TBL] [Abstract][Full Text] [Related]
14. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat. Cram D; Kulkarni M; Buchwaldt M; Rajagopalan N; Bhowmik P; Rozwadowski K; Parkin IAP; Sharpe AG; Kagale S BMC Plant Biol; 2019 Nov; 19(1):474. PubMed ID: 31694550 [TBL] [Abstract][Full Text] [Related]
15. Computational Prediction of CRISPR/Cas9 Target Sites Reveals Potential Off-Target Risks in Human and Mouse. Wang Q; Ui-Tei K Methods Mol Biol; 2017; 1630():43-53. PubMed ID: 28643248 [TBL] [Abstract][Full Text] [Related]
16. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs. Fu Y; Reyon D; Joung JK Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334 [TBL] [Abstract][Full Text] [Related]
17. Protocol for Delivery of CRISPR/dCas9 Systems for Epigenetic Editing into Solid Tumors Using Lipid Nanoparticles Encapsulating RNA. Woodward EA; Wang E; Wallis C; Sharma R; Tie AWJ; Murthy N; Blancafort P Methods Mol Biol; 2024; 2842():267-287. PubMed ID: 39012601 [TBL] [Abstract][Full Text] [Related]
18. CRISPR Nickase-Mediated Base Editing in Yeast. Kuroda K; Ueda M Methods Mol Biol; 2021; 2196():27-37. PubMed ID: 32889710 [TBL] [Abstract][Full Text] [Related]
19. multicrispr: gRNA design for prime editing and parallel targeting of thousands of targets. Bhagwat AM; Graumann J; Wiegandt R; Bentsen M; Welker J; Kuenne C; Preussner J; Braun T; Looso M Life Sci Alliance; 2020 Nov; 3(11):. PubMed ID: 32907859 [TBL] [Abstract][Full Text] [Related]
20. Computational Design of gRNAs Targeting Genetic Variants Across HIV-1 Subtypes for CRISPR-Mediated Antiviral Therapy. Chung CH; Allen AG; Atkins A; Link RW; Nonnemacher MR; Dampier W; Wigdahl B Front Cell Infect Microbiol; 2021; 11():593077. PubMed ID: 33768011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]