These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33905968)

  • 1. The aversion positivity: Mediofrontal cortical potentials reflect parametric aversive prediction errors and drive behavioral modification following negative reinforcement.
    Rawls E; Lamm C
    Cortex; 2021 Jul; 140():26-39. PubMed ID: 33905968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedback-Related Negativity and Frontal Midline Theta Reflect Dissociable Processing of Reinforcement.
    Rawls E; Miskovic V; Moody SN; Lee Y; Shirtcliff EA; Lamm C
    Front Hum Neurosci; 2019; 13():452. PubMed ID: 31998100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediofrontal event-related potentials in response to positive, negative and unsigned prediction errors.
    Sambrook TD; Goslin J
    Neuropsychologia; 2014 Aug; 61():1-10. PubMed ID: 24946315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing.
    Glazer JE; Kelley NJ; Pornpattananangkul N; Mittal VA; Nusslock R
    Int J Psychophysiol; 2018 Oct; 132(Pt B):184-202. PubMed ID: 29454641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outcome valence and stimulus frequency affect neural responses to rewards and punishments.
    Glazer J; Nusslock R
    Psychophysiology; 2022 Mar; 59(3):e13981. PubMed ID: 34847254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontal theta links prediction errors to behavioral adaptation in reinforcement learning.
    Cavanagh JF; Frank MJ; Klein TJ; Allen JJ
    Neuroimage; 2010 Feb; 49(4):3198-209. PubMed ID: 19969093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principal components analysis of reward prediction errors in a reinforcement learning task.
    Sambrook TD; Goslin J
    Neuroimage; 2016 Jan; 124(Pt A):276-286. PubMed ID: 26196667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The feedback-related negativity indexes prediction error in active but not observational learning.
    Burnside R; Fischer AG; Ullsperger M
    Psychophysiology; 2019 Sep; 56(9):e13389. PubMed ID: 31054155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pain feedback interferes with reward positivity production.
    Heydari S; Holroyd CB
    Psychophysiology; 2022 Jun; 59(6):e14004. PubMed ID: 35182391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reward positivity is sensitive to affective liking.
    Brown DR; Jackson TCJ; Cavanagh JF
    Cogn Affect Behav Neurosci; 2022 Apr; 22(2):258-267. PubMed ID: 34599487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-trial modeling separates multiple overlapping prediction errors during reward processing in human EEG.
    Hoy CW; Steiner SC; Knight RT
    Commun Biol; 2021 Jul; 4(1):910. PubMed ID: 34302057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrocortical response to rewarding and aversive feedback: The reward positivity does not reflect salience in simple gambling tasks.
    Mulligan EM; Hajcak G
    Int J Psychophysiol; 2018 Oct; 132(Pt B):262-267. PubMed ID: 29183793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disentangling performance-monitoring signals encoded in feedback-related EEG dynamics.
    Kirsch F; Kirschner H; Fischer AG; Klein TA; Ullsperger M
    Neuroimage; 2022 Aug; 257():119322. PubMed ID: 35577025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback-related negativity codes prediction error but not behavioral adjustment during probabilistic reversal learning.
    Chase HW; Swainson R; Durham L; Benham L; Cools R
    J Cogn Neurosci; 2011 Apr; 23(4):936-46. PubMed ID: 20146610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociating the contributions of reward-prediction errors to trial-level adaptation and long-term learning.
    Lohse KR; Miller MW; Daou M; Valerius W; Jones M
    Biol Psychol; 2020 Jan; 149():107775. PubMed ID: 31563586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of reward magnitude on reward processing: An averaged and single trial event-related potential study.
    Meadows CC; Gable PA; Lohse KR; Miller MW
    Biol Psychol; 2016 Jul; 118():154-160. PubMed ID: 27288743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG correlates of physical effort and reward processing during reinforcement learning.
    Palidis DJ; Gribble PL
    J Neurophysiol; 2020 Aug; 124(2):610-622. PubMed ID: 32727262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback information and the reward positivity.
    Cockburn J; Holroyd CB
    Int J Psychophysiol; 2018 Oct; 132(Pt B):243-251. PubMed ID: 29208491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valence-separated representation of reward prediction error in feedback-related negativity and positivity.
    Bai Y; Katahira K; Ohira H
    Neuroreport; 2015 Feb; 26(3):157-62. PubMed ID: 25634316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When the outcome is different than expected: Subjective expectancy shapes reward prediction error at the FRN level.
    Walentowska W; Severo MC; Moors A; Pourtois G
    Psychophysiology; 2019 Dec; 56(12):e13456. PubMed ID: 31403188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.