These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33906014)

  • 1. Computational method and program for generating a porous scaffold based on implicit surfaces.
    Iamsamang J; Naiyanetr P
    Comput Methods Programs Biomed; 2021 Jun; 205():106088. PubMed ID: 33906014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New paradigms in hierarchical porous scaffold design for tissue engineering.
    Yoo D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1759-72. PubMed ID: 23827634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous scaffold design using the distance field and triply periodic minimal surface models.
    Yoo DJ
    Biomaterials; 2011 Nov; 32(31):7741-54. PubMed ID: 21798592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions.
    Yoo D
    Med Eng Phys; 2012 Jun; 34(5):625-39. PubMed ID: 22487098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triply Periodic Minimal Surfaces (TPMS) for the Generation of Porous Architectures Using Stereolithography.
    Blanquer SBG; Grijpma DW
    Methods Mol Biol; 2021; 2147():19-30. PubMed ID: 32840807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological and mechanical property analysis for designed heterogeneous porous scaffolds based on the refined TPMS.
    Ma S; Song K; Lan J; Ma L
    J Mech Behav Biomed Mater; 2020 Jul; 107():103727. PubMed ID: 32276186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.
    Yoo D
    Med Eng Phys; 2012 Jul; 34(6):762-76. PubMed ID: 22721938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone Tissue Scaffolds Designed With A Porosity Gradient Based On Triply Periodic Minimal Surfaces Using A Parametric Approach.
    Flores-Jimenez MS; Fuentes-Aguilar RQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1209-1212. PubMed ID: 34891504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore Strategy Design of a Novel NiTi-Nb Biomedical Porous Scaffold Based on a Triply Periodic Minimal Surface.
    Lv Y; Liu G; Wang B; Tang Y; Lin Z; Liu J; Wei G; Wang L
    Front Bioeng Biotechnol; 2022; 10():910475. PubMed ID: 35757802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a Haversian system-like gradient porous scaffold based on triply periodic minimal surfaces for promoting bone regeneration.
    Li L; Wang P; Liang H; Jin J; Zhang Y; Shi J; Zhang Y; He S; Mao H; Xue B; Lai J; Zhu L; Jiang Q
    J Adv Res; 2023 Dec; 54():89-104. PubMed ID: 36632888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design.
    Vijayavenkataraman S; Zhang L; Zhang S; Hsi Fuh JY; Lu WF
    ACS Appl Bio Mater; 2018 Aug; 1(2):259-269. PubMed ID: 35016376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds.
    Lu Y; Zhao W; Cui Z; Zhu H; Wu C
    J Mech Behav Biomed Mater; 2019 Nov; 99():56-65. PubMed ID: 31344523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering.
    Shi J; Zhu L; Li L; Li Z; Yang J; Wang X
    Sci Rep; 2018 May; 8(1):7395. PubMed ID: 29743648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the design maps of TPMS based bone scaffolds using a computational modeling framework simultaneously considering various conditions.
    Lu Y; Huo Y; Zou J; Li Y; Yang Z; Zhu H; Wu C
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1157-1168. PubMed ID: 35647704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robocasting of Ceramic Fischer-Koch S Scaffolds for Bone Tissue Engineering.
    Baumer V; Gunn E; Riegle V; Bailey C; Shonkwiler C; Prawel D
    J Funct Biomater; 2023 Apr; 14(5):. PubMed ID: 37233361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the discrepancies in the geometric and mechanical properties of the theoretically designed and additively manufactured scaffolds.
    Lu Y; Cui Z; Cheng L; Li J; Yang Z; Zhu H; Wu C
    J Mech Behav Biomed Mater; 2020 Dec; 112():104080. PubMed ID: 32927278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Digital modeling for the individual mandibular 3D mesh scaffold based on 3D printing technology].
    Yan R; Luo D; Qin X; Li R; Rong Q; Hu M
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 May; 51(5):280-5. PubMed ID: 27220387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiscale optimisation method for bone growth scaffolds based on triply periodic minimal surfaces.
    Lehder EF; Ashcroft IA; Wildman RD; Ruiz-Cantu LA; Maskery I
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2085-2096. PubMed ID: 34318358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design procedure for triply periodic minimal surface based biomimetic scaffolds.
    Günther F; Wagner M; Pilz S; Gebert A; Zimmermann M
    J Mech Behav Biomed Mater; 2022 Feb; 126():104871. PubMed ID: 34654652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.