BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 33906598)

  • 1. Transcriptome dynamic landscape underlying the improvement of maize lodging resistance under coronatine treatment.
    Ren Z; Wang X; Tao Q; Guo Q; Zhou Y; Yi F; Huang G; Li Y; Zhang M; Li Z; Duan L
    BMC Plant Biol; 2021 Apr; 21(1):202. PubMed ID: 33906598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering transcriptional mechanisms of maize internodal elongation by regulatory network analysis.
    Ren Z; Liu Y; Li L; Wang X; Zhou Y; Zhang M; Li Z; Yi F; Duan L
    J Exp Bot; 2023 Aug; 74(15):4503-4519. PubMed ID: 37170764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification.
    Zhang Y; Wang Y; Ye D; Xing J; Duan L; Li Z; Zhang M
    Plant Sci; 2020 Jan; 290():110196. PubMed ID: 31779899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato.
    Uppalapati SR; Ayoubi P; Weng H; Palmer DA; Mitchell RE; Jones W; Bender CL
    Plant J; 2005 Apr; 42(2):201-17. PubMed ID: 15807783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Priming for enhanced defence responses by specific inhibition of the Arabidopsis response to coronatine.
    Tsai CH; Singh P; Chen CW; Thomas J; Weber J; Mauch-Mani B; Zimmerli L
    Plant J; 2011 Feb; 65(3):469-79. PubMed ID: 21265899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis reveals the mechanism of internode development affecting maize stalk strength.
    Xie L; Wen D; Wu C; Zhang C
    BMC Plant Biol; 2022 Jan; 22(1):49. PubMed ID: 35073838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection.
    de Torres Zabala M; Zhai B; Jayaraman S; Eleftheriadou G; Winsbury R; Yang R; Truman W; Tang S; Smirnoff N; Grant M
    New Phytol; 2016 Feb; 209(3):1120-34. PubMed ID: 26428397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mechanism of Exogenous Salicylic Acid and 6-Benzylaminopurine Regulating the Elongation of Maize Mesocotyl.
    Qi X; Zhuang Z; Ji X; Bian J; Peng Y
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Wide Identification of miRNAs and Their Targets Involved in the Developing Internodes under Maize Ears by Responding to Hormone Signaling.
    Zhao Z; Xue Y; Yang H; Li H; Sun G; Zhao X; Ding D; Tang J
    PLoS One; 2016; 11(10):e0164026. PubMed ID: 27695059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize.
    Wang X; Shi Z; Zhang R; Sun X; Wang J; Wang S; Zhang Y; Zhao Y; Su A; Li C; Wang R; Zhang Y; Wang S; Wang Y; Song W; Zhao J
    BMC Plant Biol; 2020 Nov; 20(1):515. PubMed ID: 33176702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize.
    Wang H; Gu L; Zhang X; Liu M; Jiang H; Cai R; Zhao Y; Cheng B
    Plant Mol Biol; 2018 Oct; 98(3):187-203. PubMed ID: 30327994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense.
    Geng X; Cheng J; Gangadharan A; Mackey D
    Plant Cell; 2012 Nov; 24(11):4763-74. PubMed ID: 23204405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 7B-1 mutation in tomato (Solanum lycopersicum L.) confers a blue light-specific lower sensitivity to coronatine, a toxin produced by Pseudomonas syringae pv. tomato.
    Bergougnoux V; Hlavácková V; Plotzová R; Novák O; Fellner M
    J Exp Bot; 2009; 60(4):1219-30. PubMed ID: 19213807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maize plant architecture trait QTL mapping and candidate gene identification based on multiple environments and double populations.
    Fei J; Lu J; Jiang Q; Liu Z; Yao D; Qu J; Liu S; Guan S; Ma Y
    BMC Plant Biol; 2022 Mar; 22(1):110. PubMed ID: 35277127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000.
    Uppalapati SR; Ishiga Y; Wangdi T; Kunkel BN; Anand A; Mysore KS; Bender CL
    Mol Plant Microbe Interact; 2007 Aug; 20(8):955-65. PubMed ID: 17722699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems.
    Heinrich M; Hettenhausen C; Lange T; Wünsche H; Fang J; Baldwin IT; Wu J
    Plant J; 2013 Feb; 73(4):591-606. PubMed ID: 23190261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants.
    Wang Y; Gu W; Xie T; Li L; Sun Y; Zhang H; Li J; Wei S
    PLoS One; 2016; 11(2):e0149404. PubMed ID: 26872260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize.
    Avila LM; Cerrudo D; Swanton C; Lukens L
    J Exp Bot; 2016 Mar; 67(5):1577-88. PubMed ID: 26767748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome profiling revealed novel transcriptional regulators in maize responses to Ostrinia furnacalis and jasmonic acid.
    Wang H; Li S; Teng S; Liang H; Xin H; Gao H; Huang D; Lang Z
    PLoS One; 2017; 12(5):e0177739. PubMed ID: 28520800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phytotoxin COR induces transcriptional reprogramming of photosynthetic, hormonal and defence networks in tomato.
    Zhang ZC; He B; Sun S; Zhang X; Li T; Wang HH; Xu LR; Afzal AJ; Geng XQ
    Plant Biol (Stuttg); 2021 May; 23 Suppl 1():69-79. PubMed ID: 33512048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.