BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 33906944)

  • 1. High-throughput functional variant screens via in vivo production of single-stranded DNA.
    Schubert MG; Goodman DB; Wannier TM; Kaur D; Farzadfard F; Lu TK; Shipman SL; Church GM
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33906944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retron Library Recombineering: Next Powerful Tool for Genome Editing after CRISPR/Cas.
    Kaur N; Pati PK
    ACS Synth Biol; 2024 Apr; 13(4):1019-1025. PubMed ID: 38480006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pooled clone collections by multiplexed CRISPR-Cas12a-assisted gene tagging in yeast.
    Buchmuller BC; Herbst K; Meurer M; Kirrmaier D; Sass E; Levy ED; Knop M
    Nat Commun; 2019 Jul; 10(1):2960. PubMed ID: 31273196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries.
    Li Y; Mensah EO; Fordjour E; Bai J; Yang Y; Bai Z
    Biotechnol Adv; 2022 Oct; 59():107970. PubMed ID: 35550915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex Generation, Tracking, and Functional Screening of Substitution Mutants Using a CRISPR/Retron System.
    Lim H; Jun S; Park M; Lim J; Jeong J; Lee JH; Bang D
    ACS Synth Biol; 2020 May; 9(5):1003-1009. PubMed ID: 32348672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-functional genome-wide CRISPR system for high throughput genotype-phenotype mapping.
    Lian J; Schultz C; Cao M; HamediRad M; Zhao H
    Nat Commun; 2019 Dec; 10(1):5794. PubMed ID: 31857575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel Mapping of Antibiotic Resistance Alleles in Escherichia coli.
    Weiss SJ; Mansell TJ; Mortazavi P; Knight R; Gill RT
    PLoS One; 2016; 11(1):e0146916. PubMed ID: 26771672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast genetic interaction screens in the age of CRISPR/Cas.
    Adames NR; Gallegos JE; Peccoud J
    Curr Genet; 2019 Apr; 65(2):307-327. PubMed ID: 30255296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas9.
    Walter JM; Schubert MG; Kung SH; Hawkins K; Platt DM; Hernday AD; Mahatdejkul-Meadows T; Szeto W; Chandran SS; Newman JD; Horwitz AA
    Methods Mol Biol; 2019; 2049():39-72. PubMed ID: 31602604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Genome Editing Using In Vivo Synthesized Donor ssDNA in
    Hao M; Wang Z; Qiao H; Yin P; Qiao J; Qi H
    Cells; 2020 Feb; 9(2):. PubMed ID: 32085579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA.
    Gallagher RR; Li Z; Lewis AO; Isaacs FJ
    Nat Protoc; 2014 Oct; 9(10):2301-16. PubMed ID: 25188632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles.
    Lanza DG; Gaspero A; Lorenzo I; Liao L; Zheng P; Wang Y; Deng Y; Cheng C; Zhang C; Seavitt JR; DeMayo FJ; Xu J; Dickinson ME; Beaudet AL; Heaney JD
    BMC Biol; 2018 Jun; 16(1):69. PubMed ID: 29925370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Genome-wide Perturbations via CRISPR Adaptation Reveal Complex Genetics of Antibiotic Sensitivity.
    Jiang W; Oikonomou P; Tavazoie S
    Cell; 2020 Mar; 180(5):1002-1017.e31. PubMed ID: 32109417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Method for Genome-Scale Functional Genomic Study in Bacteria with Superior Performance: CRISPR Interference Screen.
    Liao X; Xing XH; Zhang C
    Methods Mol Biol; 2022; 2377():123-141. PubMed ID: 34709614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cap: multiplexed double-stranded DNA enrichment based on the CRISPR system.
    Lee J; Lim H; Jang H; Hwang B; Lee JH; Cho J; Lee JH; Bang D
    Nucleic Acids Res; 2019 Jan; 47(1):e1. PubMed ID: 30215766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.
    Aregger M; Chandrashekhar M; Tong AHY; Chan K; Moffat J
    Methods Mol Biol; 2019; 1869():169-188. PubMed ID: 30324523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. System-level genome editing in microbes.
    Csörgő B; Nyerges Á; Pósfai G; Fehér T
    Curr Opin Microbiol; 2016 Oct; 33():113-122. PubMed ID: 27472027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guide RNA library-based CRISPR screens in plants: opportunities and challenges.
    Pan C; Li G; Bandyopadhyay A; Qi Y
    Curr Opin Biotechnol; 2023 Feb; 79():102883. PubMed ID: 36603502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.