BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3390696)

  • 1. The dorsal raphe nucleus: a re-evaluation of its proposed role in opiate analgesia systems.
    Klatt DS; Guinan MJ; Culhane ES; Carstens E; Watkins LR
    Brain Res; 1988 May; 447(2):246-52. PubMed ID: 3390696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opiate and serotonergic mechanisms of stimulation-produced analgesia within the periaqueductal gray.
    Nichols DS; Thorn BE; Berntson GG
    Brain Res Bull; 1989 Apr; 22(4):717-24. PubMed ID: 2736397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat.
    Campion KN; Saville KA; Morgan MM
    Eur J Neurosci; 2016 Nov; 44(9):2667-2672. PubMed ID: 27564986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia.
    Fardin V; Oliveras JL; Besson JM
    Brain Res; 1984 Jul; 306(1-2):105-23. PubMed ID: 6540613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. II. Differential characteristics of the analgesia induced by ventral and dorsal PAG stimulation.
    Fardin V; Oliveras JL; Besson JM
    Brain Res; 1984 Jul; 306(1-2):125-39. PubMed ID: 6466968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation-produced analgesia in the mouse: evidence for laterality of opioid mediation.
    Marek P; Yirmiya R; Liebeskind JC
    Brain Res; 1991 Feb; 541(1):154-6. PubMed ID: 2029617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projections from the periaqueductal gray matter to the B3 cellular area (nucleus raphe magnus and nucleus reticularis paragigantocellularis) as revealed by the retrograde transport of horseradish peroxidase in the rat.
    Fardin V; Oliveras JL; Besson JM
    J Comp Neurol; 1984 Mar; 223(4):483-500. PubMed ID: 6325508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N. raphe magnus lesions disrupt stimulation-produced analgesia from ventral but not dorsal midbrain areas in the rat.
    Prieto GJ; Cannon JT; Liebeskind JC
    Brain Res; 1983 Feb; 261(1):53-7. PubMed ID: 6301628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site specificity in the development of tolerance to stimulation-produced analgesia from the periaqueductal gray matter of the rat.
    Morgan MM; Liebeskind JC
    Brain Res; 1987 Nov; 425(2):356-9. PubMed ID: 3427436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neural basis of footshock analgesia: the effect of periaqueductal gray lesions and decerebration.
    Watkins LR; Kinscheck IB; Mayer DJ
    Brain Res; 1983 Oct; 276(2):317-24. PubMed ID: 6627012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projections from dorsal raphe nucleus to the periaqueductal grey matter: studies in slices of rat midbrain maintained in vitro.
    Stezhka VV; Lovick TA
    Neurosci Lett; 1997 Jul; 230(1):57-60. PubMed ID: 9259463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of naloxone administered into the periaqueductal gray on shock-elicited freezing behavior in the rat.
    Hammer GD; Kapp BS
    Behav Neural Biol; 1986 Sep; 46(2):189-95. PubMed ID: 3767831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of periaqueductal gray and nucleus raphe magnus on analgesia induced by lappaconitine, N-deacetyllappaconitine and morphine.
    Guo X; Tang XC
    Zhongguo Yao Li Xue Bao; 1990 Mar; 11(2):107-12. PubMed ID: 2275382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for opioid and non-opioid forms of stimulation-produced analgesia in the rat.
    Cannon JT; Prieto GJ; Lee A; Liebeskind JC
    Brain Res; 1982 Jul; 243(2):315-21. PubMed ID: 7104742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neural basis of footshock analgesia: the role of specific ventral medullary nuclei.
    Watkins LR; Young EG; Kinscheck IB; Mayer DJ
    Brain Res; 1983 Oct; 276(2):305-15. PubMed ID: 6627011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blockade by naltrexone of analgesia produced by stimulation of the dorsal raphe nucleus.
    Swajkoski AR; Mayer DJ; Johnson JH
    Pharmacol Biochem Behav; 1981 Sep; 15(3):419-23. PubMed ID: 7291246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of glutamate in opiate descending inhibition of nociceptive spinal reflexes.
    van Praag H; Frenk H
    Brain Res; 1990 Jul; 524(1):101-5. PubMed ID: 1976028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analysis of the 'tolerance' which develops to analgetic electrical stimulation of the midbrain periaqueductal grey in freely moving rats.
    Millan MJ; Członkowski A; Herz A
    Brain Res; 1987 Dec; 435(1-2):97-111. PubMed ID: 3427472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic neural circuits between dorsal midbrain neurons that control fear-induced responses and seizure activity and nuclei of the pain inhibitory system elaborating postictal antinociceptive processes: a functional neuroanatomical and neuropharmacological study.
    Freitas RL; Ferreira CM; Ribeiro SJ; Carvalho AD; Elias-Filho DH; Garcia-Cairasco N; Coimbra NC
    Exp Neurol; 2005 Feb; 191(2):225-42. PubMed ID: 15649478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analgesia produced by electrical stimulation of the brain.
    Mayer DJ
    Prog Neuropsychopharmacol Biol Psychiatry; 1984; 8(4-6):557-64. PubMed ID: 6397776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.