These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33907048)

  • 1. Tensile mechanical analysis of anisotropy and velocity dependence of the spinal cord white matter: a biomechanical study.
    Nishida N; Sakuramoto I; Fujii Y; Hutama RY; Jiang F; Ohgi J; Imajo Y; Suzuki H; Funaba M; Chen X; Sakai T
    Neural Regen Res; 2021 Dec; 16(12):2557-2562. PubMed ID: 33907048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical behavior of bovine spinal cord white matter under various strain rate conditions: tensile testing and visco-hyperelastic constitutive modeling.
    Jiang F; Sakuramoto I; Nishida N; Onomoto Y; Ohgi J; Chen X
    Med Biol Eng Comput; 2023 Jun; 61(6):1381-1394. PubMed ID: 36708501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Transverse Isotropy of Spinal Cord White Matter Under Dynamic Load.
    Jannesar S; Nadler B; Sparrey CJ
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: new approach based on the mechanical features of the spinal cord white and gray matter.
    Ichihara K; Taguchi T; Sakuramoto I; Kawano S; Kawai S
    J Neurosurg; 2003 Oct; 99(3 Suppl):278-85. PubMed ID: 14563145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-examination of the mechanical anisotropy of porcine thoracic aorta by uniaxial tensile tests.
    Chen Q; Wang Y; Li ZY
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):167. PubMed ID: 28155705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter.
    Ichihara K; Taguchi T; Shimada Y; Sakuramoto I; Kawano S; Kawai S
    J Neurotrauma; 2001 Mar; 18(3):361-7. PubMed ID: 11284555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The denticulate ligament - Tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord.
    Polak-Kraśna K; Robak-Nawrocka S; Szotek S; Czyż M; Gheek D; Pezowicz C
    J Mech Behav Biomed Mater; 2019 Mar; 91():10-17. PubMed ID: 30529981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography.
    Schmidt JL; Tweten DJ; Badachhape AA; Reiter AJ; Okamoto RJ; Garbow JR; Bayly PV
    J Mech Behav Biomed Mater; 2018 Mar; 79():30-37. PubMed ID: 29253729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The distribution of tissue damage in the spinal cord is influenced by the contusion velocity.
    Sparrey CJ; Choo AM; Liu J; Tetzlaff W; Oxland TR
    Spine (Phila Pa 1976); 2008 Oct; 33(22):E812-9. PubMed ID: 18923304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue.
    Schmidt JL; Tweten DJ; Benegal AN; Walker CH; Portnoi TE; Okamoto RJ; Garbow JR; Bayly PV
    J Biomech; 2016 May; 49(7):1042-1049. PubMed ID: 26920505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biomechanical behaviors of cervical spinal cord injury related to various bone fragment impact velocities: a finite element study].
    Duan S; Zhu ZQ; Wang KF; Liu CJ; Xu S; Xia WW; Liu HY
    Zhonghua Yi Xue Za Zhi; 2018 Mar; 98(11):837-841. PubMed ID: 29609266
    [No Abstract]   [Full Text] [Related]  

  • 12. Age-related changes of the spinal cord: A biomechanical study.
    Okazaki T; Kanchiku T; Nishida N; Ichihara K; Sakuramoto I; Ohgi J; Funaba M; Imajo Y; Suzuki H; Chen X; Taguchi T
    Exp Ther Med; 2018 Mar; 15(3):2824-2829. PubMed ID: 29599828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of spinal cord grey matter and white matter in confined compression.
    Yu J; Manouchehri N; Yamamoto S; Kwon BK; Oxland TR
    J Mech Behav Biomed Mater; 2020 Dec; 112():104044. PubMed ID: 32947099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensile Tissue Stress Affects the Orientation of Cortical Microtubules in the Epidermis of Sunflower Hypocotyl.
    Hejnowicz Z; Rusin A; Rusin T
    J Plant Growth Regul; 2000 Mar; 19(1):31-44. PubMed ID: 11010990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical Behaviors in Three Types of Spinal Cord Injury Mechanisms.
    Khuyagbaatar B; Kim K; Man Park W; Hyuk Kim Y
    J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27276391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of spinal cord injury in the rat.
    Maikos JT; Qian Z; Metaxas D; Shreiber DI
    J Neurotrauma; 2008 Jul; 25(7):795-816. PubMed ID: 18627257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber orientation effects in simple shearing of fibrous soft tissues.
    Horgan CO; Murphy JG
    J Biomech; 2017 Nov; 64():131-135. PubMed ID: 29033002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cohesion on shear banding in quasistatic granular materials.
    Singh A; Magnanimo V; Saitoh K; Luding S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022202. PubMed ID: 25215728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression profiles of neurotrophic factors in rat cultured spinal cord cells under cyclic tensile stress.
    Uchida K; Nakajima H; Takamura T; Furukawa S; Kobayashi S; Yayama T; Baba H
    Spine (Phila Pa 1976); 2008 Nov; 33(24):2596-604. PubMed ID: 18981959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-weighted MR imaging of the normal human spinal cord in vivo.
    Holder CA; Muthupillai R; Mukundan S; Eastwood JD; Hudgins PA
    AJNR Am J Neuroradiol; 2000; 21(10):1799-806. PubMed ID: 11110530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.